Metabolite and reaction inference based on enzyme specificities

被引:17
作者
de Groot, M. J. L. [1 ,2 ,3 ,4 ]
van Berlo, R. J. P. [1 ,3 ]
van Winden, W. A. [2 ,3 ]
Verheijen, P. J. T. [2 ,3 ]
Reinders, M. J. T. [1 ,3 ,4 ]
de Ridder, D. [1 ,3 ,4 ]
机构
[1] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Delft Bioinformat Lab, NL-2628 CD Delft, Netherlands
[2] Delft Univ Technol, Dept Biotechnol, Bioproc Technol Grp, NL-2628 BC Delft, Netherlands
[3] Delft Univ Technol, Kluyver Ctr Genom Ind Fermentat, NL-2600 GA Delft, Netherlands
[4] Netherlands Bioinformat Ctr, NL-6500 HB Nijmegen, Netherlands
关键词
PREDICTION; RECONSTRUCTION; PROMISCUITY; INFORMATION; CATALYSIS; SYSTEM;
D O I
10.1093/bioinformatics/btp507
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Many enzymes are not absolutely specific, or even promiscuous: they can catalyze transformations of more compounds than the traditional ones as listed in, e.g. KEGG. This information is currently only available in databases, such as the BRENDA enzyme activity database. In this article, we propose to model enzyme aspecificity by predicting whether an input compound is likely to be transformed by a certain enzyme. Such a predictor has many applications, for example, to complete reconstructed metabolic networks, to aid in metabolic engineering or to help identify unknown peaks in mass spectra. Results: We have developed a system for metabolite and reaction inference based on enzyme specificities (MaRIboES). It employs structural and stereochemistry similarity measures and molecular fingerprints to generalize enzymatic reactions based on data available in BRENDA. Leave-one-out cross-validation shows that 80% of known reactions are predicted well. Application to the yeast glycolytic and pentose phosphate pathways predicts a large number of known and new reactions, often leading to the formation of novel compounds, as well as a number of interesting bypasses and cross-links.
引用
收藏
页码:2975 / 2982
页数:8
相关论文
共 39 条
[21]  
HAIDER N, 2003, CHECKMOL MATCHMOL
[22]   Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways [J].
Hattori, M ;
Okuno, Y ;
Goto, S ;
Kanehisa, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (39) :11853-11865
[23]   Exploring the diversity of complex metabolic networks [J].
Hatzimanikatis, V ;
Li, CH ;
Ionita, JA ;
Henry, CS ;
Jankowski, MD ;
Broadbelt, LJ .
BIOINFORMATICS, 2005, 21 (08) :1603-1609
[24]   A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology [J].
Herrgard, Markus J. ;
Swainston, Neil ;
Dobson, Paul ;
Dunn, Warwick B. ;
Arga, K. Yalcin ;
Arvas, Mikko ;
Bluethgen, Nils ;
Borger, Simon ;
Costenoble, Roeland ;
Heinemann, Matthias ;
Hucka, Michael ;
Le Novere, Nicolas ;
Li, Peter ;
Liebermeister, Wolfram ;
Mo, Monica L. ;
Oliveira, Ana Paula ;
Petranovic, Dina ;
Pettifer, Stephen ;
Simeonidis, Evangelos ;
Smallbone, Kieran ;
Spasic, Irena ;
Weichart, Dieter ;
Brent, Roger ;
Broomhead, David S. ;
Westerhoff, Hans V. ;
Kirdar, Betuel ;
Penttila, Merja ;
Klipp, Edda ;
Palsson, Bernhard O. ;
Sauer, Uwe ;
Oliver, Stephen G. ;
Mendes, Pedro ;
Nielsen, Jens ;
Kell, Douglas B. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1155-1160
[25]   Group contribution method for thermodynamic analysis of complex metabolic networks [J].
Jankowski, Matthew D. ;
Henry, Christopher S. ;
Broadbelt, Linda J. ;
Hatzimanikatis, Vassily .
BIOPHYSICAL JOURNAL, 2008, 95 (03) :1487-1499
[26]   KEGG: Kyoto Encyclopedia of Genes and Genomes [J].
Kanehisa, M ;
Goto, S .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :27-30
[27]   META 4. Prediction of the metabolism of polycyclic aromatic hydrocarbons [J].
Klopman, G ;
Tu, M ;
Fan, BT .
THEORETICAL CHEMISTRY ACCOUNTS, 1999, 102 (1-6) :33-38
[28]   A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets [J].
Lai, Carmen ;
Reinders, Marcel J. T. ;
van't Veer, Laura J. ;
Wessels, Lodewyk F. A. .
BMC BIOINFORMATICS, 2006, 7 (1)
[29]   Computational discovery of biochemical routes to specialty chemicals [J].
Li, CH ;
Henry, CS ;
Jankowski, MD ;
Ionita, JA ;
Hatzimanikatis, V ;
Broadbelt, LJ .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (22-23) :5051-5060
[30]   Protein promiscuity and its implications for biotechnology [J].
Nobeli, Irene ;
Favia, Angelo D. ;
Thornton, Janet M. .
NATURE BIOTECHNOLOGY, 2009, 27 (02) :157-167