Massive point defect redistribution near semiconductor surfaces and interfaces and its impact on Schottky barrier formation

被引:23
作者
Brillson, L. J. [1 ,2 ,3 ]
Dong, Y. [1 ]
Doutt, D. [2 ]
Look, D. C. [4 ,5 ]
Fang, Z. -Q. [4 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[3] Ohio State Univ, Ctr Mat Res, Columbus, OH 43210 USA
[4] Wright State Univ, Semicond Res Ctr, Dayton, OH 45435 USA
[5] WPAFB, AF Res Lab, Dayton, OH 45435 USA
基金
美国国家科学基金会;
关键词
Defects; Cathodoluminescence spectroscopy; Interfaces; Segregation; Schottky barriers; N-TYPE; ZNO; STATES; TRANSITION;
D O I
10.1016/j.physb.2009.08.151
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Nanoscale depth-resolved cathodoluminescence spectroscopy calibrated with deep level transient spectroscopy of native point defects and capacitance-voltage measurements of free carrier densities, all at the same metal-semiconductor interface, demonstrate that native point defects can (i) increase by order-of-magnitude in densities with tens of nanometers of the semiconductor surface, (ii) alter free carrier concentrations and band profiles with the surface space charge regions, and (iii) dominate the Schottky barrier formation for metal contacts to ZnO and many other single crystal compound semiconductors. The spatial redistribution of electrically active defects within the surface space charge can be understood in terms of temperature-dependent atomic diffusion enabled by low formation energies and driven by strain and electric fields as well as metal-specific chemical reactions near room temperature, consistent with first-principles calculations of interfacial segregation and migration barriers. These results underscore the importance of native point defects in charge transport and barrier formation at semiconductor interfaces. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4768 / 4773
页数:6
相关论文
共 36 条
[1]   Interfacial segregation and electrodiffusion of dopants in AlN/GaN superlattices [J].
Boguslawski, P. ;
Szwacki, N. Gonzalez ;
Bernholc, J. .
PHYSICAL REVIEW LETTERS, 2006, 96 (18)
[2]   Dominant effect of near-interface native point defects on ZnO Schottky barriers [J].
Brillson, L. J. ;
Mosbacker, H. L. ;
Hetzer, M. J. ;
Strzhemechny, Y. ;
Jessen, G. H. ;
Look, D. C. ;
Cantwell, G. ;
Zhang, J. ;
Song, J. J. .
APPLIED PHYSICS LETTERS, 2007, 90 (10)
[3]   Nanoscale depth-resolved cathodoluminescence spectroscopy of ZnO surfaces and metal interfaces [J].
Brillson, L. J. ;
Mosbacker, H. L. ;
Doutt, D. L. ;
Dong, Y. ;
Fang, Z. -Q. ;
Look, D. C. ;
Cantwell, G. ;
Zhang, J. ;
Song, J. J. .
SUPERLATTICES AND MICROSTRUCTURES, 2009, 45 (4-5) :206-213
[4]   Localized states at InGaN/GaN quantum well interfaces [J].
Brillson, LJ ;
Levin, TM ;
Jessen, GH ;
Ponce, FA .
APPLIED PHYSICS LETTERS, 1999, 75 (24) :3835-3837
[5]   Nanoscale luminescence spectroscopy of defects at buried interfaces and ultrathin films [J].
Brillson, LJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (05) :1762-1768
[6]   TRANSITION IN SCHOTTKY-BARRIER FORMATION WITH CHEMICAL REACTIVITY [J].
BRILLSON, LJ .
PHYSICAL REVIEW LETTERS, 1978, 40 (04) :260-263
[7]   Boron segregation in As-implanted Si caused by electric field and transient enhanced diffusion [J].
Chang, RD ;
Choi, PS ;
Kwong, DL ;
Wristers, D ;
Chu, PK .
APPLIED PHYSICS LETTERS, 1998, 72 (14) :1709-1711
[8]   Segregation of oxygen vacancy at metal-HfO2 interfaces [J].
Cho, Eunae ;
Lee, Bora ;
Lee, Choong-Ki ;
Han, Seungwu ;
Jeon, Sang Ho ;
Park, Bae Ho ;
Kim, Yong-Sung .
APPLIED PHYSICS LETTERS, 2008, 92 (23)
[9]   Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000(1)over-bar) [J].
Coppa, BJ ;
Davis, RF ;
Nemanich, RJ .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :400-402
[10]  
DONG Y, UNPUB