Degradation of the basic helix-loop-helix/Per-ARNT-Sim homology domain dioxin receptor via the ubiquitin/proteasome pathway

被引:107
作者
Roberts, BJ [1 ]
Whitelaw, ML [1 ]
机构
[1] Univ Adelaide, Dept Biochem, Adelaide, SA 5005, Australia
关键词
D O I
10.1074/jbc.274.51.36351
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The basic helix-loop-helix/Per-ARNT-Sim homology domain dioxin receptor (DR) translocates to the nucleus upon binding of aromatic hydrocarbon ligands typified by dioxin, whereupon it partners the Ah receptor nuclear translocator and initiates transcription. Concurrently, ligand binding down-regulates receptor levels via an unknown mechanism. In this study we show that receptor levels are dependent upon cellular compartmentalization, with entry into the nucleus leading to the rapid destruction of the DR. Ligand-induced DR translocation was bypassed by adding a heterologous nuclear localization signal to the DR, creating a constitutively nuclear form of the dioxin receptor (DRNLS). The DRNLS protein was shown to be unstable with a half-life of less than or equal to 1 h whether partnering ARNT or HSP90. Thus, the structural changes induced by ligand binding have no inherent effect on DR stability but are critical in transporting the receptor prior to degradation. The proteolytic pathway that degrades the nuclear receptor is suggested to involve ubiquitination as it was inhibited by the proteasome inhibitor MG132 or co-expression of DRNLS with the ubiquitin mutant UbK48R. Incubation of cells expressing DRNLS with the phosphatase inhibitor calyculin resulted in the rapid phosphorylation and ubiquitination of DRNLS, suggesting that a nuclear kinase is required to trigger receptor proteolysis. Overall, this study demonstrates a novel mechanism of proteolysis whereby the simple relocation of a transcription factor from cytoplasm to nucleus initiates its rapid destruction.
引用
收藏
页码:36351 / 36356
页数:6
相关论文
共 42 条
[1]   beta-catenin is a target for the ubiquitin-proteasome pathway [J].
Aberle, H ;
Bauer, A ;
Stappert, J ;
Kispert, A ;
Kemler, R .
EMBO JOURNAL, 1997, 16 (13) :3797-3804
[2]   Degradation of myogenic transcription factor MyoD by the ubiquitin pathway in vivo and in vitro: Regulation by specific DNA binding [J].
Abu Hatoum, O ;
Gross-Mesilaty, S ;
Breitschopf, K ;
Hoffman, A ;
Gonen, H ;
Ciechanover, A ;
Bengal, E .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (10) :5670-5677
[3]  
ANDERSSON S, 1989, J BIOL CHEM, V264, P8222
[4]   A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein [J].
Breitschopf, K ;
Bengal, E ;
Ziv, T ;
Admon, A ;
Ciechanover, A .
EMBO JOURNAL, 1998, 17 (20) :5964-5973
[5]  
Carver LA, 1997, J BIOL CHEM, V272, P11452
[6]   Characterization of the Ah receptor-associated protein, ARA9 [J].
Carver, LA ;
LaPres, JJ ;
Jain, S ;
Dunham, EE ;
Bradfield, CA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33580-33587
[7]   A MULTIUBIQUITIN CHAIN IS CONFINED TO SPECIFIC LYSINE IN A TARGETED SHORT-LIVED PROTEIN [J].
CHAU, V ;
TOBIAS, JW ;
BACHMAIR, A ;
MARRIOTT, D ;
ECKER, DJ ;
GONDA, DK ;
VARSHAVSKY, A .
SCIENCE, 1989, 243 (4898) :1576-1583
[8]   Site-specific phosphorylation of I kappa B alpha by a novel ubiquitination-dependent protein kinase activity [J].
Chen, ZJ ;
Parent, L ;
Maniatis, T .
CELL, 1996, 84 (06) :853-862
[9]   Nucleocytoplasmic transport: Driving and directing transport [J].
Cole, CN ;
Hammell, CM .
CURRENT BIOLOGY, 1998, 8 (11) :R368-R372
[10]   Control of cell lineage-specific development and transcription by bHLH-PAS proteins [J].
Crews, ST .
GENES & DEVELOPMENT, 1998, 12 (05) :607-620