Spectral pollution

被引:66
作者
Davies, EB [1 ]
Plum, M
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Karlsruhe, Inst Math 1, D-76128 Karlsruhe, Germany
关键词
spectral pollution; self-adjoint operator; spectrum; spurious eignvalues; spectal enclosures;
D O I
10.1093/imanum/24.3.417
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that routine methods of computing the spectrum of a self-adjoint operator often lead to spurious eigenvalues in a gap between two parts of the essential spectrum. We provide a geometrical explanation for a numerical method of resolving this problem, and give some examples of its use.
引用
收藏
页码:417 / 438
页数:22
相关论文
共 23 条
[1]  
[Anonymous], AM MATH SOC TRANSL S
[2]   Finite element analysis of a quadratic eigenvalue problem arising in dissipative acoustics [J].
Bermúdez, A ;
Durán, RG ;
Rodríguez, R ;
Solomin, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (01) :267-291
[3]  
Boffi D, 2000, MATH COMPUT, V69, P121, DOI 10.1090/S0025-5718-99-01072-8
[4]   A remark on spurious eigenvalues in a square [J].
Boffi, D ;
Duran, RG ;
Gastaldi, L .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :107-114
[5]  
BOTTCHER, 1995, LECT OPERATOR THEORY, P1
[6]  
CHATELIN F., 1983, Spectral Approximation of Linear Operators
[7]  
Davies E.B., 1980, One-parameter semigroups
[8]  
Davies E. B., 1998, LMS J. Comput. Math., V1, P42, DOI DOI 10.1112/S1461157000000140
[9]   SCATTERING THEORY FOR SYSTEMS WITH DIFFERENT SPATIAL ASYMPTOTICS ON LEFT AND RIGHT [J].
DAVIES, EB ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 63 (03) :277-301
[10]   ON THE EXISTENCE OF EIGENVALUES OF THE SCHRODINGER OPERATOR H-LAMBDA-W IN A GAP OF SIGMA(H) [J].
DEIFT, PA ;
HEMPEL, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (03) :461-490