Spectral pollution

被引:66
作者
Davies, EB [1 ]
Plum, M
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Karlsruhe, Inst Math 1, D-76128 Karlsruhe, Germany
关键词
spectral pollution; self-adjoint operator; spectrum; spurious eignvalues; spectal enclosures;
D O I
10.1093/imanum/24.3.417
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that routine methods of computing the spectrum of a self-adjoint operator often lead to spurious eigenvalues in a gap between two parts of the essential spectrum. We provide a geometrical explanation for a numerical method of resolving this problem, and give some examples of its use.
引用
收藏
页码:417 / 438
页数:22
相关论文
共 23 条
[11]   Zeros of orthogonal polynomials on the real line [J].
Denisov, SA ;
Simon, B .
JOURNAL OF APPROXIMATION THEORY, 2003, 121 (02) :357-364
[12]   ON THE UPPER AND LOWER BOUNDS OF EIGENVALUES [J].
KATO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1949, 4 (4-6) :334-339
[13]   Szego type limit theorems [J].
Laptev, A ;
Safarov, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 138 (02) :544-559
[14]  
Lehmann N. J., 1963, Numer. Math., V5, P246
[15]   Spectral pollution and second-order relative spectra for self-adjoint operators [J].
Levitin, M ;
Shargorodsky, E .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (03) :393-416
[16]  
MERTINS U, 1996, J ANAL APPL, V15, P661
[17]   On spectral pollution in the finite element approximation of thin elastic ''membrane'' shells [J].
Rappaz, J ;
Hubert, JS ;
Palencia, ES ;
Vassiliev, D .
NUMERISCHE MATHEMATIK, 1997, 75 (04) :473-500
[18]  
Shargorodsky E, 2000, J OPERAT THEOR, V44, P43
[19]  
Weinstein A., 1972, METHODS INTERMEDIATE
[20]  
Wright T. G., 2002, EIGTOOL