Estimating illumination chromaticity via support vector regression

被引:67
作者
Xiong, Weihua [1 ]
Funt, Brian [1 ]
机构
[1] Simon Fraser Univ, Sch Comp Sci, Vancouver, BC, Canada
关键词
D O I
10.2352/J.ImagingSci.Technol.(2006)50:4(341)
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Support vector regression is applied to the problem of estimating the chromaticity of the light illuminating a scene from a color histogram of an image of the scene. Illumination estimation is fundamental to white balancing digital color images and to understanding human color constancy. Under controlled experimental conditions, the support vector method is shown to perform well. Its performance is compared to other published methods including neural network color constancy, color by correlation, and shades of gray. (C) 2006 Society for Imaging Science and Technology.
引用
收藏
页码:341 / 348
页数:8
相关论文
共 30 条
[21]   A comparison of methods for multiclass support vector machines [J].
Hsu, CW ;
Lin, CJ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (02) :415-425
[22]  
KECMAN V, 2001, LEARNING SOFT COMPUT, P121
[23]   Classification of multiple cancer types by tip multicategory support vector machines using gene expression data [J].
Lee, Y ;
Lee, CK .
BIOINFORMATICS, 2003, 19 (09) :1132-1139
[24]  
LEE Y, 2001, P 33 S INT INT FDN N
[25]   COLOR CONSTANCY - A METHOD FOR RECOVERING SURFACE SPECTRAL REFLECTANCE [J].
MALONEY, LT ;
WANDELL, BA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (01) :29-33
[26]  
*S FRAS U, COMP VIS LAB DAT
[27]   A tutorial on support vector regression [J].
Smola, AJ ;
Schölkopf, B .
STATISTICS AND COMPUTING, 2004, 14 (03) :199-222
[28]  
VANKHUU H, MACHINE LEARNING NEU
[29]  
Wu CH, 2003, 2003 IEEE INTELLIGENT TRANSPORTATION SYSTEMS PROCEEDINGS, VOLS. 1 & 2, P1438
[30]  
Yang HQ, 2002, LECT NOTES COMPUT SC, V2412, P391