Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems

被引:70
作者
Harnisch, Falk [1 ]
Warmbier, Robert [2 ]
Schneider, Ralf [2 ]
Schroeder, Uwe [1 ]
机构
[1] Ernst Moritz Arndt Univ Greifswald, Inst Biochem, Greifswald, Germany
[2] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
关键词
Biological fuel cells; Microbial fuel cells; Modeling; Bioelectrolyzer; Ion exchange membrane; Nafion; MICROBIAL FUEL-CELL; POWER-GENERATION; PERFORMANCE; CATION; ANION; TRANSPORT; NAFION;
D O I
10.1016/j.bioelechem.2009.03.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An explicit numerical model for the charge balancing ion transfer across monopolar ion exchange membranes under conditions of bioelectrochemical systems is presented. Diffusion and migration equations have been solved according to the Nernst-Planck Equation and the resulting ion concentrations, pH values and the resistance values of the membrane for different conditions were computed. The modeling results underline the principle limitations of the application of ion exchange membranes in biological fuel cells and electrolyzers. caused by the inherent occurrence of a pH-gradient between anode and cathode compartment, and an increased ohmic membrane resistance at decreasing electrolyte concentrations. Finally, the physical and numerical limitations of the model are discussed. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:136 / 141
页数:6
相关论文
共 31 条
[21]   Effects of membrane cation transport on pH and microbial fuel cell performance [J].
Rozendal, Rene A. ;
Hamelers, Hubertus V. M. ;
Buisman, Cees J. N. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (17) :5206-5211
[22]   Principle and perspectives of hydrogen production through biocatalyzed electrolysis [J].
Rozendal, Rene A. ;
Hamelers, Hubertus V. M. ;
Euverink, Gerrit J. W. ;
Metz, Sybrand J. ;
Buisman, Cees J. N. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (12) :1632-1640
[23]   Mechanisms of proton transfer in Nafion®:: elementary reactions at the sulfonic acid groups [J].
Sagarik, Kritsana ;
Phonyiem, Mayuree ;
Lao-ngam, Charoensak ;
Chaiwongwattana, Sermsiri .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (15) :2098-2112
[24]   Diffusion coefficients of alkali metal cations in Nafion(R) from ion-exchange measurements - An advanced kinetic model [J].
Samec, Z ;
Trojanek, A ;
Langmaier, J ;
Samcova, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4236-4242
[25]   Ionic conductivity of an extruded Nafion 1100 EW series of membranes [J].
Slade, S ;
Campbell, SA ;
Ralph, TR ;
Walsh, FC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) :A1556-A1564
[26]   Numerical solution of the coupled Nernst-Planck and Poisson equations for liquid junction and ion selective membrane potentials [J].
Sokalski, T ;
Lingenfelter, P ;
Lewenstam, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (11) :2443-2452
[27]   Ion mobility in Nafion-117 membranes [J].
Stenina, IA ;
Sistat, P ;
Rebrov, AI ;
Pourcelly, G ;
Yaroslavtsev, AB .
DESALINATION, 2004, 170 (01) :49-57
[28]   Permeation of inorganic anions through Nafion ionomer membrane [J].
Unnikrishnan, EK ;
Kumar, SD ;
Maiti, B .
JOURNAL OF MEMBRANE SCIENCE, 1997, 137 (1-2) :133-137
[29]   Investigations of the ex situ ionic conductivities at 30°C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities [J].
Varcoe, John R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (12) :1479-1486
[30]   Prospects for alkaline anion-exchange membranes in low temperature fuel cells [J].
Varcoe, JR ;
Slade, RCT .
FUEL CELLS, 2005, 5 (02) :187-200