Integrator forwarding: A new recursive nonlinear robust design

被引:118
作者
Sepulchre, R
Jankovic, M
Kokotovic, PV
机构
[1] FORD MOTOR CO, SCI RES LABS, DEARBORN, MI 48121 USA
[2] UNIV CALIF SANTA BARBARA, DEPT ELECT & COMP ENGN, CTR CONTROL ENGN & COMPUTAT, SANTA BARBARA, CA 93106 USA
关键词
nonlinear systems; global stabilization; design methods; feedforward systems;
D O I
10.1016/S0005-1098(96)00249-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the global stabilization of nonlinear systems in strict feedforward form. We show that these systems, while not feedback linearizable, can be (globally) transformed by feedback and diffeomorphism into lower-triangular form. The transformation is explicit and recursive. We employ this transformation to design a globally stabilizing controller with optimality properties and an input-to-state stability property with respect to matched uncertainties. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:979 / 984
页数:6
相关论文
共 15 条
[1]   NONQUADRATIC COST AND NONLINEAR FEEDBACK-CONTROL [J].
BERNSTEIN, DS .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1993, 3 (03) :211-229
[2]   ROBUSTNESS OF NONLINEAR STATE FEEDBACK - A SURVEY [J].
GLAD, ST .
AUTOMATICA, 1987, 23 (04) :425-435
[3]  
Jacobson D.H., 1977, EXTENSIONS LINEAR QU
[4]  
Jankovic M, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P993, DOI 10.1109/CDC.1995.480216
[5]   Constructive Lyapunov stabilization of nonlinear cascade systems [J].
Jankovic, M ;
Sepulchre, R ;
Kokotovic, PV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (12) :1723-1735
[6]   CONTROLLABILITY AND STABILITY [J].
JURDJEVIC, V ;
QUINN, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 28 (03) :381-389
[7]  
Kokotovic P. V., 1991, FDN ADAPTIVE CONTROL, P311
[8]  
Kristic M., 1995, Nonlinear and Adaptive Control Design
[9]  
Marino R., 1995, NONLINEAR CONTROL DE
[10]  
MAZENC F, 1994, IEEE DECIS CONTR P, P121, DOI 10.1109/CDC.1994.411035