Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides

被引:26
作者
Naik, Mehraj-ud-din [1 ]
Rather, Sami-ullah [1 ]
So, Chang Su [2 ]
Hwang, Sang Woon [1 ]
Kim, Ae Rhan [2 ]
Nahm, Kee Suk [1 ,2 ]
机构
[1] Chonbuk Natl Univ, Sch Chem Engn & Technol, Chonju 561756, South Korea
[2] Chonbuk Natl Univ, Dept Hydrogen & Fuel Cells Engn, Specialized Grad Sch, Chonju 561756, South Korea
关键词
Hydrides; Catalysis; Hydrogen; Alanate; Transition metals; X-ray diffraction; SODIUM ALUMINUM-HYDRIDE; REVERSIBLE HYDROGEN STORAGE; WALLED CARBON NANOTUBES; DEHYDROGENATION; DESORPTION; CATALYSTS; SYSTEM; IMIDES;
D O I
10.1016/j.ijhydene.2009.07.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermogravimetric analysis of LiAlH4 chemically mixed with different additives is reported for the application of hydrogen storage. Here, we illustrated the dehydrogenation properties of combined LiAlH4/LiNH2 (2:1) mixture and LiAlH4 wet-doped with different transition metals (Sc, Ti, and V) in their chloride forms. Thermal gravimetric analysis of LiAlH4/LiNH2 system released similar to 7.9 wt.% of hydrogen in three decomposition steps at temperatures between 75 and 280 degrees C under a heating ramp of 5 degrees C min(-1). The LiAlH4 doped with transition metals showed the decrease of decomposition temperature down to 3040 degrees C for both 1st and 2nd dehydrogenation steps as compared to as-received LiAlH4. The catalytic activity in lowering the dehydrogenation temperature of LiAlH4 doped with transition metals increases in the order of pure LiAlH4 < V < Ti < Sc. The X-ray diffraction analysis, field emission scanning electron microscopy, and Fourier transformation infrared spectroscopy techniques were carried out in support of the thermogravimetric results. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8937 / 8943
页数:7
相关论文
共 38 条
[1]   Desorption of LiAlH4 with Ti- and V-based additives [J].
Blanchard, D ;
Brinks, HW ;
Hauback, BC ;
Norby, P .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2004, 108 (1-2) :54-59
[2]   THERMAL DECOMPOSITION OF LITHIUM ALUMINUM HYDRIDE [J].
BLOCK, J ;
GRAY, AP .
INORGANIC CHEMISTRY, 1965, 4 (03) :304-&
[3]   Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J].
Bogdanovic, B ;
Schwickardi, M .
JOURNAL OF ALLOYS AND COMPOUNDS, 1997, 253 (1-2) :1-9
[4]   Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials [J].
Bogdanovic, B ;
Brand, RA ;
Marjanovic, A ;
Schwickardi, M ;
Tölle, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 302 (1-2) :36-58
[5]   Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6 [J].
Chen, J ;
Kuriyama, N ;
Xu, Q ;
Takeshita, HT ;
Sakai, T .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (45) :11214-11220
[6]   Interaction between lithium amide and lithium hydride [J].
Chen, P ;
Xiong, ZT ;
Luo, JZ ;
Lin, JY ;
Tan, KL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (39) :10967-10970
[7]   Interaction of hydrogen with metal nitrides and imides [J].
Chen, P ;
Xiong, ZT ;
Luo, JZ ;
Lin, JY ;
Tan, KL .
NATURE, 2002, 420 (6913) :302-304
[8]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[9]   Mechanical and thermal decomposition of LiAlH4 with metal halides [J].
Fernandez, J. R. Ares ;
Aguey-Zinsou, F. ;
Elsaesser, M. ;
Ma, X. Z. ;
Dornheim, M. ;
Bormann, R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (08) :1033-1040
[10]   THE THERMAL DECOMPOSITION OF LITHIUM ALUMINIUM HYDRIDE [J].
GARNER, WE ;
HAYCOCK, EW .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1952, 211 (1106) :335-351