Impact of 'ome' analyses on inverse metabolic engineering

被引:66
作者
Bro, C [1 ]
Nielsen, J [1 ]
机构
[1] Tech Univ Denmark, DTU, BioCtr, Ctr Microbial Biotechnol, DK-2800 Lyngby, Denmark
关键词
inverse metabolic engineering; functional genomics; DNA sequencing; DNA arrays; proteome analysis; metabolite profiling; flux; analysis;
D O I
10.1016/j.ymben.2003.11.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome-wide or large-scale methodologies employed in functional genomics such as DNA sequencing, transcription profiling, proteomics, and metabolite profiling have become important tools in many metabolic engineering strategies. These techniques allow the identification of genetic differences and insight into their cellular effects. In the field of inverse metabolic engineering mapping of differences between strains with different degree of a certain desired phenotype and subsequent identification of factors conferring that phenotype are an essential part. Therefore, the tools of functional genomics in particular have the potential to promote and expand inverse metabolic engineering. Here, we review the use of functional genomics methods in inverse metabolic engineering, examples are presented, and we discuss the identification of targets for metabolic engineering with low fold changes using these techniques. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:204 / 211
页数:8
相关论文
共 46 条
[11]   The commercial production of chemicals using pathway engineering [J].
Chotani, G ;
Dodge, T ;
Hsu, A ;
Kumar, M ;
LaDuca, R ;
Trimbur, D ;
Weyler, W ;
Sanford, K .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2000, 1543 (02) :434-455
[12]  
Christensen B, 2000, Adv Biochem Eng Biotechnol, V66, P209
[13]   Metabolic characterization of high- and low-yielding strains of Penicillium chrysogenum [J].
Christensen, B ;
Thykær, J ;
Nielsen, J .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2000, 54 (02) :212-217
[14]   Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays [J].
Daran-Lapujade, P ;
Daran, JM ;
Kotter, P ;
Petit, T ;
Piper, MDW ;
Pronk, JT .
FEMS YEAST RESEARCH, 2003, 4 (03) :259-269
[15]   PURIFICATION AND PROPERTIES OF PHOSPHOGLUCOMUTASE FROM FLEISCHMANNS YEAST [J].
DAUGHERTY, JP ;
KRAEMER, WF ;
JOSHI, JG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1975, 57 (01) :115-126
[16]   Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants [J].
DeRisi, J ;
van den Hazel, B ;
Marc, P ;
Balzi, E ;
Brown, P ;
Jacq, C ;
Goffeau, A .
FEBS LETTERS, 2000, 470 (02) :156-160
[17]   Systematic changes in gene expression patterns following adaptive evolution in yeast [J].
Ferea, TL ;
Botstein, D ;
Brown, PO ;
Rosenzweig, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (17) :9721-9726
[18]   Metabolite profiling for plant functional genomics [J].
Fiehn, O ;
Kopka, J ;
Dörmann, P ;
Altmann, T ;
Trethewey, RN ;
Willmitzer, L .
NATURE BIOTECHNOLOGY, 2000, 18 (11) :1157-1161
[19]   Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network [J].
Förster, J ;
Famili, I ;
Fu, P ;
Palsson, BO ;
Nielsen, J .
GENOME RESEARCH, 2003, 13 (02) :244-253
[20]   A functional genomics approach using metabolomics and in silico pathway analysis [J].
Förster, J ;
Gombert, AK ;
Nielsen, J .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (07) :703-712