With rising levels of CO2 in our atmosphere, technologies capable of converting CO2 into useful products have become more valuable. The field of electrochemical CO2 reduction is reviewed here, with sections on mechanism, formate (formic acid) production, carbon monoxide production, reduction to higher products (methanol, methane, etc.), use of flow cells, high pressure approaches, molecular catalysts, non-aqueous electrolytes, and solid oxide electrolysis cells. These diverse approaches to electrochemical CO2 reduction are compared and contrasted, emphasizing potential processes that would be feasible for large-scale use. Although the focus is on recent reports, highlights of older reports are also included due to their important contributions to the field, particularly for high-rate electrolysis.