Differential annotation of tRNA genes with anticodon CAT in bacterial genomes

被引:34
作者
Silva, Francisco J. [1 ]
Belda, Eugeni [1 ]
Talens, Santiago E. [1 ]
机构
[1] Univ Valencia, Inst Cavanilles Biodivers & Biol Evolut, Dept Genet, E-46071 Valencia, Spain
关键词
D O I
10.1093/nar/gkl739
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have developed three strategies to discriminate among the three types of tRNA genes with anticodon CAT (tRNA(Ile), elongator tRNA(Met) and initiator tRNA(fMet)) in bacterial genomes. With these strategies, we have classified the tRNA genes from 234 bacterial and several organellar genomes. These sequences, in an aligned or unaligned format, may be used for the identification and annotation of tRNA (CAT) genes in other genomes. The first strategy is based on the position of the problem sequences in a phenogram (a tree-like network), the second on the minimum average number of differences against the tRNA sequences of the three types and the third on the search for the highest score value against the profiles of the three types of tRNA genes. The species with the maximum number of tRNA(fMet) and tRNA(Met) was Photobacterium profundum, whereas the genome of one Escherichia coli strain presented the maximum number of tRNA(Ile) (CAT) genes. This last tRNA gene and tilS, encoding an RNA-modifying enzyme, are not essential in bacteria. The acquisition of a tRNA(Ile) (TAT) gene by Mycoplasma mobile has led to the loss of both the tRNA(Ile) (CAT) and the tilS genes. The new tRNA has appropriated the function of decoding AUA codons.
引用
收藏
页码:6015 / 6022
页数:8
相关论文
共 24 条
[1]   Decoding the genome: a modified view [J].
Agris, PF .
NUCLEIC ACIDS RESEARCH, 2004, 32 (01) :223-238
[2]   CODON RECOGNITION PATTERNS AS DEDUCED FROM SEQUENCES OF THE COMPLETE SET OF TRANSFER-RNA SPECIES IN MYCOPLASMA-CAPRICOLUM - RESEMBLANCE TO MITOCHONDRIA [J].
ANDACHI, Y ;
YAMAO, F ;
MUTO, A ;
OSAWA, S .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 209 (01) :37-54
[3]   TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase [J].
Ardell, DH ;
Andersson, SGE .
NUCLEIC ACIDS RESEARCH, 2006, 34 (03) :893-904
[4]   Genome rearrangement distances and gene order phylogeny in γ-proteobacteria [J].
Belda, E ;
Moya, A ;
Silva, FJ .
MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (06) :1456-1467
[5]   Determination of the core of a minimal bacterial gene set [J].
Gil, R ;
Silva, FJ ;
Peretó, J ;
Moya, A .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2004, 68 (03) :518-+
[6]   The genome sequence of Blochmannia floridanus:: Comparative analysis of reduced genomes [J].
Gil, R ;
Silva, FJ ;
Zientz, E ;
Delmotte, F ;
González-Candelas, F ;
Latorre, A ;
Rausell, C ;
Kamerbeek, J ;
Gadau, J ;
Hölldobler, B ;
van Ham, RCHJ ;
Gross, R ;
Moya, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (16) :9388-9393
[7]   The evolutionary fate of nonfunctional DNA in the bacterial endosymbiont Buchnera aphidicola [J].
Gómez-Valero, L ;
Latorre, A ;
Silva, FJ .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (11) :2172-2181
[8]   Enzymatic conversion of cytidine to lysidine in anticodon of bacterial tRNAlle -: an alternative way of RNA editing [J].
Grosjean, H ;
Björk, GR .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (04) :165-168
[9]   Molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition [J].
Ikeuchi, Y ;
Soma, A ;
Ote, T ;
Kato, J ;
Sekine, Y ;
Suzuki, T .
MOLECULAR CELL, 2005, 19 (02) :235-246
[10]   The complete genome and proteome of Mycoplasma mobile [J].
Jaffe, JD ;
Stange-Thomann, N ;
Smith, C ;
DeCaprio, D ;
Fisher, S ;
Butler, J ;
Calvo, S ;
Elkins, T ;
Fitzgerald, MG ;
Hafez, N ;
Kodira, CD ;
Major, J ;
Wang, SG ;
Wilkinson, J ;
Nicol, R ;
Nusbaum, C ;
Birren, B ;
Berg, HC ;
Church, GM .
GENOME RESEARCH, 2004, 14 (08) :1447-1461