Entanglement cost of bipartite mixed states -: art. no. 027901

被引:98
作者
Vidal, G [1 ]
Dür, W
Cirac, JI
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[2] Univ Munich, Sekt Phys, D-80333 Munich, Germany
[3] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
关键词
D O I
10.1103/PhysRevLett.89.027901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the entanglement cost of several families of bipartite mixed states, including arbitrary mixtures of two Bell states. This is achieved by developing a technique that allows us to ascertain the additivity of the entanglement of formation for any state supported on specific subspaces. As a side result, the proof of the irreversibility in asymptotic local manipulations of entanglement is extended to two-qubit systems.
引用
收藏
页数:4
相关论文
共 21 条
[1]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[2]   Asymptotic relative entropy of entanglement -: art. no. 217902 [J].
Audenaert, K ;
Eisert, J ;
Jané, E ;
Plenio, MB ;
Virmani, S ;
De Moor, B .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :217902-1
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[5]   Entangling operations and their implementation using a small amount of entanglement [J].
Cirac, JI ;
Dür, W ;
Kraus, B ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (03) :544-547
[6]   Distillability and partial transposition in bipartite systems -: art. no. 062313 [J].
Dür, W ;
Cirac, JI ;
Lewenstein, M ;
Bruss, D .
PHYSICAL REVIEW A, 2000, 61 (06) :8
[7]  
Hayden P., QUANTPH0008134
[8]   Mixed-state entanglement and distillation: Is there a "bound" entanglement in nature? [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5239-5242
[9]  
Horodecki M, 2001, QUANTUM INF COMPUT, V1, P3
[10]  
Horodecki P, 2001, QUANTUM INF COMPUT, V1, P45