Nanocrystalline TiO2 (anatase) for Li-ion batteries

被引:192
作者
Subramanian, V.
Karki, A.
Gnanasekar, K. I.
Eddy, Fannie Posey
Rambabu, B. [1 ]
机构
[1] So Univ, Dept Phys, Solid State Ion & Surface Sci Lab, Baton Rouge, LA 70813 USA
[2] A&M Coll, Baton Rouge, LA 70813 USA
[3] Natl Renewable Energy Lab, Natl Ctr Photovoltaics, Golden, CO 80401 USA
关键词
TiO2; nanocrystalline; insertion; anatase; anode; lithium battery;
D O I
10.1016/j.jpowsour.2006.04.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocrystalline TiO2 (anatase) was synthesized successfully by the direct conversion of TiO2-sol at 85 degrees C. The as-prepared TiO2 at 85 degrees C were calcined at different temperatures and time in order to optimize the system with best electrochemical performance. The particle sizes of the synthesized materials were found to be in the range of 15-20 nm as revealed by the HR-TEM studies. Commercial TiO2 anatase (Micron size) was also studied for its Li-insertion and deinsertion properties in order to compare with the nanocrystalline TiO2. The full cell studies were performed with LiCoO2 cathode with the best performing nano-TiO2 as anode. The specific capacity of the nanocrystalline TiO2 synthesized at 500 degrees C/2 h in a half-cell configuration was 169 mAh g(-1) while for the cell with LiCoO2 cathode, it was 95 mAh g(-1) in the 2 V region. The specific reversible capacity and the cycling performance of the synthesized nano-TiO2 anode in full cell configuration across LiCoO2 cathode are superior to that reported in the literature. Cyclic voltammetry measurements showed a larger peak separation for the micro-TiO2 than the nano-TiO2, clearly indicating the influence of nano-particle size on the electrochemical performance. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:186 / 192
页数:7
相关论文
共 34 条
[1]   Synthesis of porous nanocrystalline TiO2 foam [J].
Arabatzis, IM ;
Falaras, P .
NANO LETTERS, 2003, 3 (02) :249-251
[2]   Metal oxides as negative electrode materials in Li-ion cells [J].
Badway, F ;
Plitz, I ;
Grugeon, S ;
Laruelle, S ;
Dollé, M ;
Gozdz, AS ;
Tarascon, JM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (06) :A115-A118
[3]   MECHANISTIC STUDIES OF WATER DETOXIFICATION IN ILLUMINATED TIO2 SUSPENSIONS [J].
BAHNEMANN, D ;
BOCKELMANN, D ;
GOSLICH, R .
SOLAR ENERGY MATERIALS, 1991, 24 (1-4) :564-583
[4]   Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films [J].
Chae, SY ;
Park, MK ;
Lee, SK ;
Kim, TY ;
Kim, SK ;
Lee, WI .
CHEMISTRY OF MATERIALS, 2003, 15 (17) :3326-3331
[5]   Novel 2 V rocking-chair lithium battery based on nano-crystalline titanium dioxide [J].
Exnar, I ;
Kavan, L ;
Huang, SY ;
Gratzel, M .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :720-722
[6]   Direct conversion of TiO2 sol to nanocrystalline anatase at 85 °C [J].
Gnanasekar, KI ;
Subramanian, V ;
Robinson, J ;
Jiang, JC ;
Posey, FE ;
Rambabu, B .
JOURNAL OF MATERIALS RESEARCH, 2002, 17 (06) :1507-1512
[7]  
HUANG SY, 1995, J ELECTROCHEM SOC, V142, P142
[8]   Surfactant-templated TiO2 (anatase):: Characteristic features of lithium insertion electrochemistry in organized nanostructures [J].
Kavan, L ;
Rathousky, J ;
Grätzel, M ;
Shklover, V ;
Zukal, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (50) :12012-12020
[9]   STUDY OF NANOCRYSTALLINE TIO2 (ANATASE) ELECTRODE IN THE ACCUMULATION REGIME [J].
KAVAN, L ;
KRATOCHVILOVA, K ;
GRATZEL, M .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 394 (1-2) :93-102
[10]   Lithium insertion into mesoscopic and single-crystal TiO2 (rutile) electrodes [J].
Kavan, L ;
Fattakhova, D ;
Krtil, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (04) :1375-1379