A wrapper method for feature selection using Support Vector Machines

被引:361
作者
Maldonado, Sebastian [1 ]
Weber, Richard [1 ]
机构
[1] Univ Chile, Dept Ind Engn, Santiago, Chile
关键词
Feature selection; Wrapper methods; Classification; Support Vector Machines; Mathematical programming;
D O I
10.1016/j.ins.2009.02.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a novel wrapper Algorithm for Feature Selection, using Support Vector Machines with kernel functions. Our method is based on a sequential backward selection, using the number of errors in a validation subset as the measure to decide which feature to remove in each iteration. We compare our approach with other algorithms like a filter method or Recursive Feature Elimination SVM to demonstrate its effectiveness and efficiency. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2208 / 2217
页数:10
相关论文
共 23 条
[11]  
Lal TN, 2006, STUD FUZZ SOFT COMP, V207, P137
[12]   FS_SFS: A novel feature selection method for support vector machines [J].
Liu, Yi ;
Zheng, Yuan F. .
PATTERN RECOGNITION, 2006, 39 (07) :1333-1345
[13]  
Miranda J, 2005, LECT NOTES COMPUT SC, V3776, P188
[14]  
Nemhauser G., 1988, INTEGER COMBINATORIA, DOI DOI 10.1002/9781118627372
[15]  
Rakotomamonjy A., 2003, Journal of Machine Learning Research, V3, P1357, DOI 10.1162/153244303322753706
[16]   Soft margins for AdaBoost [J].
Rätsch, G ;
Onoda, T ;
Müller, KR .
MACHINE LEARNING, 2001, 42 (03) :287-320
[17]  
Scholkopf B, 2002, Encyclopedia of Biostatistics
[18]   Multiclass SVM-RFE for product form feature selection [J].
Shieh, Meng-Dar ;
Yang, Chih-Chieh .
EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (1-2) :531-541
[19]   A novel feature selection approach:: Combining feature wrappers and filters [J].
Uncu, Oezge ;
Tuerksen, I. B. .
INFORMATION SCIENCES, 2007, 177 (02) :449-466
[20]  
Vapnik V.N., 1998, STAT LEARNING THEORY, V1