Lipoprotein transport in the metabolic syndrome: pathophysiological and interventional studies employing stable isotopy and modelling methods

被引:37
作者
Chan, DC
Barrett, PHR
Watts, GF [1 ]
机构
[1] Univ Western Australia, Sch Med & Pharmacol, Lipoprot Res Unit, Perth, WA 6847, Australia
[2] Western Australian Inst Med Res, Perth, WA 6847, Australia
关键词
interventional study; lipoprotein transport; metabolic syndrome; modelling; pathophysiological; stable isotopy;
D O I
10.1042/CS20040109
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The accompanying review in this issue of Clinical Science [Chan, Barrett and Watts (2004) Clin. Sci. 107, 221-232] presented an overview of lipoprotein physiology and the methodologies for stable isotope kinetic studies. The present review focuses on our understanding of the dysregulation and therapeutic regulation of lipoprotein transport in the metabolic syndrome based on the application of stable isotope and modelling methods. Dysregulation of lipoprotein metabolism in metabolic syndrome may be due to a combination of overproduction of VLDL [very-LDL (low-density lipoprotein)]-apo (apolipoprotein) B-100, decreased catabolism of apoB-containing particles and increased catabolism of HDL (high-density lipoprotein)-apoA-I particles. These abnormalities may be consequent on a global metabolic effect of insulin resistance, partly mediated by depressed plasma adiponectin levels, that collectively increases the flux of fatty acids from adipose tissue to the liver, the accumulation of fat in the liver and skeletal muscle, the hepatic secretion of VLDL-triacylglycerols and the remodelling of both LDL (low-density lipoprotein) and HDL particles in the circulation. These lipoprotein defects are also related to perturbations in both lipolytic enzymes and lipid transfer proteins. Our knowledge of the pathophysiology of lipoprotein metabolism in the metabolic syndrome is well complemented by extensive cell biological data. Nutritional modifications may favourably alter lipoprotein transport in the metabolic syndrome by collectively decreasing the hepatic secretion of VLDL-apoB and the catabolism of HDL-apoA-I, as well as by potentially increasing the clearance of LDL-apoB. Several pharmacological treatments, such as statins, fibrates or fish oils, can also correct the dyslipidaemia by diverse kinetic mechanisms of action, including decreased secretion and increased catabolism of apoB, as well as increased secretion and decreased catabolism of apoA-I. The complementary mechanisms of action of lifestyle and drug therapies support the use of combination regimens in treating dyslipoproteinaemia in subjects with the metabolic syndrome.
引用
收藏
页码:233 / 249
页数:17
相关论文
共 175 条
[1]   Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance [J].
Adeli, K ;
Taghibiglou, C ;
Van Iderstine, SC ;
Lewis, GF .
TRENDS IN CARDIOVASCULAR MEDICINE, 2001, 11 (05) :170-176
[2]   The effect of a six-month exercise program on very low-density lipoprotein apolipoprotein B secretion in type 2 diabetes [J].
Alam, S ;
Stolinski, M ;
Pentecost, C ;
Boroujerdi, MA ;
Jones, RH ;
Sonksen, PH ;
Umpleby, AM .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2004, 89 (02) :688-694
[3]   NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older [J].
Alexander, CM ;
Landsman, PB ;
Teutsch, SM ;
Haffner, SM .
DIABETES, 2003, 52 (05) :1210-1214
[4]   n-3 Polyunsaturated fatty acids and the cardiovascular system [J].
Angerer, P ;
von Schacky, C .
CURRENT OPINION IN LIPIDOLOGY, 2000, 11 (01) :57-63
[5]  
[Anonymous], DEF DIAGN CLASS DIAB
[6]   Comparing the effects of five different statins on the HDL subpopulation profiles of coronary heart disease patients [J].
Asztalos, BF ;
Horvath, KV ;
McNamara, JR ;
Roheim, PS ;
Rubinstein, JJ ;
Schaefer, EJ .
ATHEROSCLEROSIS, 2002, 164 (02) :361-369
[7]  
Attie AD, 2001, J LIPID RES, V42, P1717
[8]  
AUSTIN MA, 2002, CURR ATHEROSCLER REP, V2, P200
[9]   REGRESSION OF ATHEROSCLEROTIC LESIONS BY HIGH-DENSITY-LIPOPROTEIN PLASMA FRACTION IN THE CHOLESTEROL-FED RABBIT [J].
BADIMON, JJ ;
BADIMON, L ;
FUSTER, V .
JOURNAL OF CLINICAL INVESTIGATION, 1990, 85 (04) :1234-1241
[10]   ACCELERATED CHOLESTERYL ESTER TRANSFER IN PATIENTS WITH INSULIN-DEPENDENT DIABETES-MELLITUS [J].
BAGDADE, JD ;
RITTER, MC ;
SUBBAIAH, PV .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 1991, 21 (02) :161-167