Development and validation of a predictive model for the pedestal height

被引:312
作者
Snyder, P. B. [1 ]
Groebner, R. J. [1 ]
Leonard, A. W. [1 ]
Osborne, T. H. [1 ]
Wilson, H. R. [2 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Univ York, York YO10 5DD, N Yorkshire, England
关键词
discharges (electric); plasma instability; plasma magnetohydrodynamic waves; plasma toroidal confinement; plasma turbulence; Tokamak devices; EDGE LOCALIZED MODES; ALCATOR-C-MOD; TOKAMAK PLASMAS; DIII-D; MAGNETOHYDRODYNAMIC STABILITY; TRANSPORT BARRIER; NEWCOMB EQUATION; MHD STABILITY; ELMS; PERFORMANCE;
D O I
10.1063/1.3122146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The pressure at the top of the edge transport barrier (or "pedestal height") strongly impacts tokamak fusion performance. Predicting the pedestal height in future devices such as ITER [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)] remains an important challenge. While uncertainties remain, magnetohydrodynamic stability calculations at intermediate wavelength (the "peeling-ballooning" model), accounting for diamagnetic stabilization, have been largely successful in determining the observed maximum pedestal height, when the edge barrier width is taken as an input. Here, we develop a second relation between the pedestal width in normalized poloidal flux (Delta) and pedestal height (Delta=0.076 beta(1/2)(theta,ped)), using an argument based upon kinetic ballooning mode turbulence and observation. Combining this relation with direct calculations of peeling-ballooning stability yields two constraints, which together determine both the height and width of the pedestal. The resulting model, EPED1, allows quantitative prediction of the pedestal height and width in both existing and future experiments. EPED1 is successfully tested both against a dedicated experiment on the DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] tokamak, in which predictions were made before the experiment, and against a broader DIII-D data set, including ITER demonstration discharges. EPED1 is found to quantitatively capture the observed complex dependencies of the pedestal height and width. An initial set of pedestal predictions for the ITER device is presented.
引用
收藏
页数:9
相关论文
共 46 条
[21]   Effects of ripple-induced ion thermal transport on H-mode plasma performance [J].
Lonnroth, J. -S ;
Parail, V. ;
Hynonen, V. ;
Johnson, T. ;
Kiviniemi, T. ;
Oyama, N. ;
Beurskens, M. ;
Howell, D. ;
Saibene, G. ;
de Vries, P. ;
Hatae, T. ;
Kamada, Y. ;
Konovalov, S. ;
Loarte, A. ;
Shinohara, K. ;
Tobita, K. ;
Urano, H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (03) :273-295
[22]   Edge kink/ballooning mode stability in tokamaks with separatrix [J].
Medvedev, S. Yu ;
Martynov, A. A. ;
Martin, Y. R. ;
Sauter, O. ;
Villard, L. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (07) :927-938
[23]  
Mikhailovskii AB, 1997, PLASMA PHYS REP, V23, P844
[24]   High-confinement-mode edge stability of Alcator C-mod plasmas [J].
Mossessian, DA ;
Snyder, P ;
Hubbard, A ;
Hughes, JW ;
Greenwald, M ;
LaBombard, B ;
Snipes, JA ;
Wolfe, S ;
Wilson, H .
PHYSICS OF PLASMAS, 2003, 10 (05) :1720-1726
[25]   Models for the pedestal temperature at the edge of H-mode tokamak plasmas [J].
Onjun, T ;
Bateman, G ;
Kritz, AH ;
Hammett, G .
PHYSICS OF PLASMAS, 2002, 9 (12) :5018-5030
[26]   H-mode pedestal characteristics in ITER shape discharges on DIII-D [J].
Osborne, TH ;
Burrell, KH ;
Groebner, RJ ;
Lao, LL ;
Leonard, AW ;
Maingi, R ;
Miller, RL ;
Porter, GD ;
Staebler, GM ;
Turnbull, AD .
JOURNAL OF NUCLEAR MATERIALS, 1999, 266 :131-137
[27]   Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U [J].
Oyama, N ;
Sakamoto, Y ;
Isayama, A ;
Takechi, M ;
Gohil, P ;
Lao, LL ;
Snyder, PB ;
Fujita, T ;
Ide, S ;
Kamada, Y ;
Miura, Y ;
Oikawa, T ;
Suzuki, T ;
Takenaga, H ;
Toi, K .
NUCLEAR FUSION, 2005, 45 (08) :871-881
[28]   MHD stability analysis of ELMs in MAST [J].
Saarelma, S. ;
Hender, T. C. ;
Kirk, A. ;
Meyer, H. ;
Wilson, H. R. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (01) :31-42
[29]   MHD stability analysis of small ELM regimes in JET [J].
Saarelma, S. ;
Alfier, A. ;
Beurskens, M. N. A. ;
Coelho, R. ;
Koslowski, H. R. ;
Liang, Y. ;
Nunes, I. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (03)
[30]   The H-mode pedestal, ELMs and TF ripple effects in JT-60U/JET dimensionless identity experiments [J].
Saibene, G. ;
Oyama, N. ;
Loennroth, J. ;
Andrew, Y. ;
de la Luna, E. ;
Giroud, C. ;
Huysmans, G. T. A. ;
Kamada, Y. ;
Kempenaars, M. A. H. ;
Loarte, A. ;
Mc Donald, D. ;
Nave, M. M. F. ;
Meiggs, A. ;
Parail, V. ;
Sartori, R. ;
Sharapov, S. ;
Stober, J. ;
Suzuki, T. ;
Takechi, M. ;
Toi, K. ;
Urano, H. .
NUCLEAR FUSION, 2007, 47 (08) :969-983