Bayesian geostatistical prediction of the intensity of infection with Schistosoma mansoni in East Africa

被引:59
作者
Clements, A. C. A.
Moyeed, R.
Brooker, S. [1 ]
机构
[1] Univ London London Sch Hyg & Trop Med, Dept Infect & Trop Dis, London, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Infect Dis Epidemiol, Schistosomiasis Control Intitiat, London, England
[3] Univ Plymouth, Sch Math & Stat, Plymouth, Devon, England
基金
英国惠康基金;
关键词
Bayesian models; geostatistical prediction; negative binomial distribution; Schistosoma mansoni; schistosomiasis; East Africa;
D O I
10.1017/S0031182006001181
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
A Bayesian geostatistical model was developed to predict the intensity of infection with Schistosoma mansoni in East Africa. Epidemiological data from purpose-designed and standardized surveys were available for 31458 schoolchildren (90% aged between 6 and 16 years) from 459 locations across the region and used in combination with remote sensing environmental data to identify factors associated with spatial variation in infection patterns. The geostatistical model explicitly takes into account the highly aggregated distribution of parasite distributions by fitting a negative binomial distribution to the data and accounts for spatial correlation. Results identify the role of environmental risk factors in explaining geographical heterogeneity in infection intensity and show how these factors can be used to develop a predictive map. Such a map has important implications for schisosomiasis control programmes in the region.
引用
收藏
页码:711 / 719
页数:9
相关论文
共 46 条
[41]   Factors affecting high and low human IgE responses to schistosome worm antigens in an area of Brazil endemic for Schistosoma mansoni and hookworm [J].
Webster, M ;
CorreaOliveira, R ;
Gazzinelli, G ;
Viana, IRC ;
Fraga, LAD ;
Silveira, MS ;
Dunne, DW .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 1997, 57 (04) :487-494
[42]  
*WHO, 1999, WHOCDSCPCSIP992
[43]   Heterogeneities in schistosome transmission dynamics and control [J].
Woolhouse, MEJ ;
Etard, JF ;
Dietz, K ;
Ndhlovu, PD ;
Chandiwana, SK .
PARASITOLOGY, 1998, 117 :475-482
[44]   A Bayesian-based approach for spatio-temporal modeling of county level prevalence of Schistosoma japonicum infection in Jiangsu province, China [J].
Yang, GJ ;
Vounatsou, P ;
Zhou, XN ;
Tanner, M ;
Utzinger, J .
INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2005, 35 (02) :155-162
[45]   Rice irrigation and schistosomiasis in savannah and forest areas of Cotee d'Ivoire [J].
Yapi, YG ;
Briët, OJT ;
Diabate, S ;
Vounatsou, P ;
Akodo, E ;
Tanner, M ;
Teuscher, T .
ACTA TROPICA, 2005, 93 (02) :201-211
[46]   How many people do you know in prison?: Using overdispersion in count data to estimate social structure in networks [J].
Zheng, Tian ;
Salganik, Matthew J. ;
Gelman, Andrew .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) :409-423