Analytic solutions of the geodesic equation in axially symmetric space-times

被引:50
作者
Hackmann, E. [1 ]
Kagramanova, V. [2 ]
Kunz, J. [2 ]
Laemmerzahl, C. [1 ]
机构
[1] Univ Bremen Fallturm, ZARM, D-28359 Bremen, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
关键词
VACUUM; FAMILY;
D O I
10.1209/0295-5075/88/30008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The complete sets of analytic solutions of the geodesic equation in Taub-NUT-(anti-)de Sitter, Kerr-(anti-)de Sitter and also in general Plebanski-Demianski space-times without acceleration are presented. The solutions are given in terms of the Kleinian sigma functions. Copyright (C) EPLA, 2009
引用
收藏
页数:5
相关论文
共 23 条
[1]   Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes [J].
Barack, Leor ;
Cutler, Curt .
PHYSICAL REVIEW D, 2007, 75 (04)
[2]  
Buchstaber VM, 1997, Rev Math Math Phys, V10, P1
[3]   GLOBAL STRUCTURE OF KERR FAMILY OF GRAVITATIONAL FIELDS [J].
CARTER, B .
PHYSICAL REVIEW, 1968, 174 (05) :1559-+
[4]  
Chandrasekhar S., 1998, The Mathematical Theory of Black Holes
[5]   Dynamical invariants for general relativistic two-body systems at the third post-Newtonian approximation -: art. no. 044024 [J].
Damour, T ;
Jaranowski, P ;
Schäfer, G .
PHYSICAL REVIEW D, 2000, 62 (04) :1-17
[6]   EXHAUSTIVE INTEGRATION AND A SINGLE EXPRESSION FOR THE GENERAL-SOLUTION OF THE TYPE-D VACUUM AND ELECTROVAC FIELD-EQUATIONS WITH COSMOLOGICAL CONSTANT FOR A NONSINGULAR ALIGNED MAXWELL FIELD [J].
DEBEVER, R ;
KAMRAN, N ;
MCLENAGHAN, RG .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (06) :1955-1972
[7]   SEPARABILITY STRUCTURES AND KILLING-YANO TENSORS IN VACUUM TYPE-D SPACE-TIMES WITHOUT ACCELERATION [J].
DEMIANSKI, M ;
FRANCAVIGLIA, M .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1980, 19 (09) :675-680
[8]   Rotating black hole orbit functionals in the frequency domain [J].
Drasco, S ;
Hughes, SA .
PHYSICAL REVIEW D, 2004, 69 (04)
[9]   Double pendulum and θ-divisor [J].
Enolskii, VZ ;
Pronine, M ;
Richter, PH .
JOURNAL OF NONLINEAR SCIENCE, 2003, 13 (02) :157-174
[10]   A new look at the Plebanski-Demianski family of solutions [J].
Griffiths, J. B. ;
Podolsky, J. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (03) :335-369