Double pendulum and θ-divisor

被引:33
作者
Enolskii, VZ
Pronine, M
Richter, PH
机构
[1] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, SA, Italy
[2] Univ Bremen, Inst Dynam Syst, D-28334 Bremen, Germany
关键词
D O I
10.1007/s00332-002-0514-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equations of motion of integrable systems involving hyperelliptic Riemann surfaces of genus 2 and one relevant degree of freedom are integrated in the framework of the Jacobi inversion problem, using a reduction to the theta-divisor on the Jacobi variety, i.e., to the set of zeros of the theta-function. Explicit solutions are given in terms of Kleinian sigma-functions and their derivatives. The procedure is applied to the planar double pendulum without gravity, but it is worked out for any Abelian integral of first or second kind.
引用
收藏
页码:157 / 174
页数:18
相关论文
共 28 条
[1]   On the weak Kowalevski-Painleve property for hyperelliptically separable systems [J].
Abenda, S ;
Fedorov, Y .
ACTA APPLICANDAE MATHEMATICAE, 2000, 60 (02) :137-178
[2]   BIRKHOFF STRATA, BACKLUND-TRANSFORMATIONS, AND REGULARIZATION OF ISOSPECTRAL OPERATORS [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1994, 108 (01) :140-204
[3]  
BAKER H, 1907, MULTIPLY PERIODIC FU
[4]  
Baker H. F., 1995, ABELS THEOREM ALLIED
[5]  
Buchstaber V., 1997, REV MATH MATH PHYS, V10, P1
[6]  
BUCHSTABER VM, 2002, IN PRESS GRADED LIE
[7]  
Buchstaber VM., 1997, Solitons, Geometry, and Topology: On the Crossroad, P1
[8]  
Clebsch A., 1866, THEORIE ABELSCHEN FU
[9]   THETA FUNCTIONS AND NON-LINEAR EQUATIONS [J].
DUBROVIN, BA .
RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (02) :11-92
[10]   MELNIKOV METHOD APPLIED TO THE DOUBLE PENDULUM [J].
DULLIN, HR .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 93 (04) :521-528