Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications

被引:405
作者
Buryak, AV
Di Trapani, P
Skryabin, DV
Trillo, S
机构
[1] Univ New S Wales, ADFA, Sch Math & Stat, Canberra, ACT 2600, Australia
[2] Univ Insubria, INFM, Ist Fis Mat, I-22100 Como, Italy
[3] Univ Insubria, Dept Chem Phys & Math Sci, I-22100 Como, Italy
[4] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
[5] Univ Ferrara, Dept Engn, I-44100 Ferrara, Italy
[6] INFM, RM3, I-00146 Rome, Italy
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2002年 / 370卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/S0370-1573(02)00196-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an overview of nonlinear phenomena related to optical quadratic solitons-intrinsically multicomponent localized states of light, which can exist in media without inversion symmetry at the molecular level. Starting with presentation of a few derivation schemes of basic equations describing three-wave parametric wave mixing in diffractive and/or dispersive quadratic media, we discuss their continuous wave solutions and modulational instability phenomena, and then move to the classification and stability analysis of the parametric solitary waves. Not limiting ourselves to the simplest spatial and temporal quadratic solitons we also overview results related to the spatio-temporal solitons (light bullets), higher order quadratic solitons, solitons due to competing nonlinearities, dark solitons, gap solitons, cavity solitons and vortices. Special attention is paid to a comprehensive discussion of the recent experimental demonstrations of the parametric solitons including their interactions and switching. We also discuss connections of quadratic solitons with other types of solitons in optics and their interdisciplinary significance. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:63 / 235
页数:173
相关论文
共 588 条
[1]   Evolution of spatial solitons in quadratic media with fluctuating nonlinearity [J].
Abdullaev, FK ;
Darmanyan, SA ;
Kobyakov, A ;
Schmidt, E ;
Lederer, F .
OPTICS COMMUNICATIONS, 1999, 168 (1-4) :213-218
[2]   TRANSVERSE INSTABILITY OF ONE-DIMENSIONAL TRANSPARENT OPTICAL PULSES IN RESONANT MEDIA [J].
ABLOWITZ, MJ ;
KODAMA, Y .
PHYSICS LETTERS A, 1979, 70 (02) :83-86
[3]   Nonlinear Schrodinger equations with mean terms in nonresonant multidimensional quadratic materials [J].
Ablowitz, MJ ;
Biondini, G ;
Blair, S .
PHYSICAL REVIEW E, 2001, 63 (04)
[4]   Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays [J].
Aceves, AB ;
DeAngelis, C ;
Peschel, T ;
Muschall, R ;
Lederer, F ;
Trillo, S ;
Wabnitz, S .
PHYSICAL REVIEW E, 1996, 53 (01) :1172-1189
[5]   SELF-INDUCED TRANSPARENCY SOLITONS IN NONLINEAR REFRACTIVE PERIODIC MEDIA [J].
ACEVES, AB ;
WABNITZ, S .
PHYSICS LETTERS A, 1989, 141 (1-2) :37-42
[6]   Generation of two-dimensional, spatial solitonlike beams by laser modes in a quadratic medium [J].
Agin, P ;
Stegeman, GI .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (11) :3162-3169
[7]   Dynamics of Fermi resonance solitary waves propagating along two interfaces [J].
Agranovich, VM ;
Darmanyan, SA ;
Grigorishin, KI ;
Kamchatnov, AM ;
Neidlinger, T ;
Reineker, P .
PHYSICAL REVIEW B, 1998, 57 (04) :2461-2467
[8]  
AGRANOVICH VM, 1994, JETP LETT+, V59, P424
[9]   MODULATION INSTABILITY INDUCED BY CROSS-PHASE MODULATION [J].
AGRAWAL, GP .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :880-883
[10]  
Agrawal GP., 2001, Lect. Notes Phys, V18, P8