Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications

被引:405
作者
Buryak, AV
Di Trapani, P
Skryabin, DV
Trillo, S
机构
[1] Univ New S Wales, ADFA, Sch Math & Stat, Canberra, ACT 2600, Australia
[2] Univ Insubria, INFM, Ist Fis Mat, I-22100 Como, Italy
[3] Univ Insubria, Dept Chem Phys & Math Sci, I-22100 Como, Italy
[4] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
[5] Univ Ferrara, Dept Engn, I-44100 Ferrara, Italy
[6] INFM, RM3, I-00146 Rome, Italy
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2002年 / 370卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/S0370-1573(02)00196-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an overview of nonlinear phenomena related to optical quadratic solitons-intrinsically multicomponent localized states of light, which can exist in media without inversion symmetry at the molecular level. Starting with presentation of a few derivation schemes of basic equations describing three-wave parametric wave mixing in diffractive and/or dispersive quadratic media, we discuss their continuous wave solutions and modulational instability phenomena, and then move to the classification and stability analysis of the parametric solitary waves. Not limiting ourselves to the simplest spatial and temporal quadratic solitons we also overview results related to the spatio-temporal solitons (light bullets), higher order quadratic solitons, solitons due to competing nonlinearities, dark solitons, gap solitons, cavity solitons and vortices. Special attention is paid to a comprehensive discussion of the recent experimental demonstrations of the parametric solitons including their interactions and switching. We also discuss connections of quadratic solitons with other types of solitons in optics and their interdisciplinary significance. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:63 / 235
页数:173
相关论文
共 588 条
[11]   Modulation of the second-order nonlinear tensor components in multiple-quantum-well structures [J].
Aitchison, JS ;
Street, MW ;
Whitbread, ND ;
Hutchings, DC ;
Marsh, JH ;
Kennedy, GT ;
Sibbett, W .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1998, 4 (04) :695-700
[12]   DYNAMICS OF SOLITON-LIKE PULSE-PROPAGATION IN BIREFRINGENT OPTICAL FIBERS [J].
AKHMEDIEV, N ;
SOTOCRESPO, JM .
PHYSICAL REVIEW E, 1994, 49 (06) :5742-5754
[13]   GENERATION OF A TRAIN OF 3-DIMENSIONAL OPTICAL SOLITONS IN A SELF-FOCUSING MEDIUM [J].
AKHMEDIEV, N ;
SOTOCRESPO, JM .
PHYSICAL REVIEW A, 1993, 47 (02) :1358-1364
[14]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[15]   Optical vortex solitons in parametric wave mixing [J].
Alexander, TJ ;
Kivshar, YS ;
Buryak, AV ;
Sammut, RA .
PHYSICAL REVIEW E, 2000, 61 (02) :2042-2049
[16]   Stabilization of dark and vortex parametric spatial solitons [J].
Alexander, TJ ;
Buryak, AV ;
Kivshar, YS .
OPTICS LETTERS, 1998, 23 (09) :670-672
[17]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[18]  
[Anonymous], PISMA ZH EKSP TEOR F
[19]  
[Anonymous], ZH EKSP TEOR FIZ
[20]  
[Anonymous], 2001, SOLITON DRIVEN PHOTO