Calculating thermodynamics properties of quantum systems by a non-Markovian Monte Carlo procedure

被引:5
作者
Crespo, Yanier [1 ,2 ]
Laio, Alessandro [1 ,2 ]
Santoro, Giuseppe E. [1 ,2 ,3 ]
Tosatti, Erio [1 ,2 ,3 ]
机构
[1] Int Sch Adv Studies SISSA, I-34014 Trieste, Italy
[2] Democritos CNR, INFM, Natl Simulat Ctr, I-34014 Trieste, Italy
[3] Abdus Salaam Int Ctr Theoret Phys, I-34014 Trieste, Italy
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 01期
关键词
RANDOM-WALK ALGORITHM; HISTOGRAM;
D O I
10.1103/PhysRevE.80.015702
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a history-dependent Monte Carlo scheme for the efficient calculation of the free energy of quantum systems inspired by Wang-Landau and metadynamics. In the two-dimensional quantum Ising model, chosen here for illustration, the accuracy of free energy, critical temperature, and specific heat is demonstrated as a function of simulation time and successfully compared with the best available approaches. The approach is based on a path integral formulation of the quantum problem and can be applied without modifications to quantum Hamiltonians of any level of complexity. The combination of high accuracy and performance with a much broader applicability is a major advance with respect to other available methods.
引用
收藏
页数:4
相关论文
共 12 条
[1]   Equilibrium free energies from nonequilibrium metadynamics [J].
Bussi, G ;
Laio, A ;
Parrinello, M .
PHYSICAL REVIEW LETTERS, 2006, 96 (09)
[2]   Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science [J].
Laio, Alessandro ;
Gervasio, Francesco L. .
REPORTS ON PROGRESS IN PHYSICS, 2008, 71 (12)
[3]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[4]   Stochastic series expansion method for quantum Ising models with arbitrary interactions [J].
Sandvik, AW .
PHYSICAL REVIEW E, 2003, 68 (05)
[5]   QUANTUM MONTE-CARLO SIMULATION METHOD FOR SPIN SYSTEMS [J].
SANDVIK, AW ;
KURKIJARVI, J .
PHYSICAL REVIEW B, 1991, 43 (07) :5950-5961
[6]   Absence of dipole glass transition for randomly dilute classical Ising dipoles [J].
Snider, J ;
Yu, CC .
PHYSICAL REVIEW B, 2005, 72 (21)
[7]   RELATIONSHIP BETWEEN D-DIMENSIONAL QUANTAL SPIN SYSTEMS AND (D+1)-DIMENSIONAL ISING SYSTEMS - EQUIVALENCE, CRITICAL EXPONENTS AND SYSTEMATIC APPROXIMANTS OF PARTITION-FUNCTION AND SPIN CORRELATIONS [J].
SUZUKI, M .
PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (05) :1454-1469
[8]   NON-PHYSICAL SAMPLING DISTRIBUTIONS IN MONTE-CARLO FREE-ENERGY ESTIMATION - UMBRELLA SAMPLING [J].
TORRIE, GM ;
VALLEAU, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (02) :187-199
[9]  
Troyer M, 2004, BRAZ J PHYS, V34, P377, DOI 10.1590/S0103-97332004000300008
[10]   Flat histogram methods for quantum systems: Algorithms to overcome tunnelling problems and calculate the free energy [J].
Troyer, M ;
Wessel, S ;
Alet, F .
PHYSICAL REVIEW LETTERS, 2003, 90 (12) :4