Determination of the mobility gap of intrinsic μc-Si:H in p-i-n solar cells

被引:47
作者
Pieters, B. E. [1 ]
Stiebig, H. [1 ]
Zeman, M. [2 ]
van Swaaij, R. A. C. M. M. [2 ]
机构
[1] Forschungszentrum Julich, Inst Energieforsch IEF5, D-52425 Julich, Germany
[2] Delft Univ Technol, Fac EEMCS, DIMES ECTM Lab, NL-2600 GB Delft, Netherlands
关键词
elemental semiconductors; energy gap; hydrogen; silicon; solar cells; MICROCRYSTALLINE SILICON; AMORPHOUS-SILICON; PHOTOLUMINESCENCE; DISCONTINUITIES; ENERGY;
D O I
10.1063/1.3078044
中图分类号
O59 [应用物理学];
学科分类号
摘要
Microcrystalline silicon (mu c-Si:H) is a promising material for application in multijunction thin-film solar cells. A detailed analysis of the optoelectronic properties is impeded by its complex microstructural properties. In this work we will focus on determining the mobility gap of mu c-Si:H material. Commonly a value of 1.1 eV is found, similar to the bandgap of crystalline silicon. However, in other studies mobility gap values have been reported to be in the range of 1.48-1.59 eV, depending on crystalline volume fraction. Indeed, for the accurate modeling of mu c-Si:H solar cells, it is paramount that key parameters such as the mobility gap are accurately determined. A method is presented to determine the mobility gap of the intrinsic layer in a p-i-n device from the voltage-dependent dark current activation energy. We thus determined a value of 1.19 eV for the mobility gap of the intrinsic layer of an mu c-Si:H p-i-n device. We analyze the obtained results in detail through numerical simulations of the mu c-Si:H p-i-n device. The applicability of the method for other than the investigated devices is discussed with the aid of numerical simulations.
引用
收藏
页数:10
相关论文
共 31 条
[11]  
DYLLA T, 2005, THESIS FORSCHUNGSZEN
[12]   Determination of the mobility gap of microcrystalline silicon and of the band discontinuities at the amorphous microcrystalline silicon interface using in situ Kelvin probe technique [J].
Hamma, S ;
Roca i Cabarrocas, PI .
APPLIED PHYSICS LETTERS, 1999, 74 (21) :3218-3220
[13]   Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth [J].
Houben, L ;
Luysberg, M ;
Hapke, P ;
Carius, R ;
Finger, F ;
Wagner, H .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1998, 77 (06) :1447-1460
[14]  
KANSCHAT P, 2000, MATER RES SOC S P, V609
[15]   Spatial effects on ideality factor of amorphous silicon pin diodes [J].
Kroon, MA ;
van Swaaij, RACMM .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (02) :994-1000
[16]   Microcrystalline silicon solar cells deposited at high rates [J].
Mai, Y ;
Klein, S ;
Carius, R ;
Wolff, J ;
Lambertz, A ;
Finger, F ;
Geng, X .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)
[17]   ELECTRICAL-PROPERTIES OF N-AMORPHOUS P-CRYSTALLINE SILICON HETEROJUNCTIONS [J].
MATSUURA, H ;
OKUNO, T ;
OKUSHI, H ;
TANAKA, K .
JOURNAL OF APPLIED PHYSICS, 1984, 55 (04) :1012-1019
[18]  
Meier J., 1994, P 1 IEEE WORLD C PHO, V1, P409
[19]  
Merdzhanova T, 2005, J OPTOELECTRON ADV M, V7, P485
[20]   The transport mechanism in micro-crystalline silicon [J].
Overhof, H ;
Otte, M ;
Schmidtke, M ;
Backhausen, U ;
Carius, R .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1998, 227 :992-995