Two generations of insulinotropic imidazoline compounds

被引:48
作者
Efendic, S
Efanov, AM
Berggren, PO
Zaitsev, SV
机构
[1] Karolinska Inst, Rolf Luft Ctr Diabet Res, Dept Mol Med, Stockholm, Sweden
[2] Moscow MV Lomonosov State Univ, Belozersky Inst Physicochem Biol, Moscow, Russia
关键词
D O I
10.2337/diabetes.51.2007.S448
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The imidazoline RX871024 increased basal- and glucose-stimulated insulin release in vitro and in vivo. The compound inhibited activity of ATP-sensitive K+ channels as well as voltage-gated K+ channels, which led to membrane depolarization, an increase in the cytosolic Ca2+ concentration ([Ca2+](i)), and insulin release. Importantly, RX871024 also enhanced the insulinotropic effect of glucose in cells with clamped [Ca2+](i) but in the presence of high ATP and Ca2+ concentration inside the cell. We believe that the latter effect on insulin exocytosis was at least in part mediated by a rise in diacylglycerol, which then activated protein kinase C (PKC) and increased the generation of arachidonic acid (AA) metabolites. Activation of both the PKC and AA pathways resulted in potentiation of glucose effects on insulin secretion. Unlike RX871024, the novel imidazoline BLI1282 did not block ATP-dependent K+ channels, but similarly to RX871024, it stimulated insulin secretion in depolarized or permeabilized islets. Accordingly, BL11282 did not influence glucose and insulin levels under basal conditions either in vitro or in vivo, but it markedly enhanced the insulinotropic effects of glucose. BL11282 restored the impaired insulin response to glucose in islets from spontaneously diabetic GK rats. We conclude that BL11282 belongs to a new class of insulinotropic compounds that demonstrate a strong glucose-dependent effect on insulin exocytosis.
引用
收藏
页码:S448 / S454
页数:7
相关论文
共 49 条
[31]  
OSTENSON CG, 1988, J CLIN ENDOCR METAB, V67, P1054
[32]   ALPHA-ADRENOCEPTORS AND INSULIN RELEASE FROM PANCREATIC-ISLETS OF NORMAL AND DIABETIC RATS [J].
OSTENSON, CG ;
CATTANEO, AG ;
DOXEY, JC ;
EFENDIC, S .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 257 (03) :E439-E443
[33]   Phentolamine block of K-ATP channels is mediated by Kir6.2 [J].
Proks, P ;
Ashcroft, FM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (21) :11716-11720
[34]   GLUCOSE-INHIBITION OF GLUCAGON-SECRETION INVOLVES ACTIVATION OF GABAA-RECEPTOR CHLORIDE CHANNELS [J].
RORSMAN, P ;
BERGGREN, PO ;
BOKVIST, K ;
ERICSON, H ;
MOHLER, H ;
OSTENSON, CG ;
SMITH, PA .
NATURE, 1989, 341 (6239) :233-236
[35]   REGULATION OF GLUCAGON-RELEASE FROM PANCREATIC A-CELLS [J].
RORSMAN, P ;
ASHCROFT, FM ;
BERGGREN, PO .
BIOCHEMICAL PHARMACOLOGY, 1991, 41 (12) :1783-1790
[36]  
SCHULZ A, 1989, N-S ARCH PHARMACOL, V340, P321
[37]   DUAL ACTION OF CLONIDINE ON INSULIN RELEASE - SUPPRESSION, BUT STIMULATION WHEN ALPHA-2-ADRENOCEPTORS ARE BLOCKED [J].
SCHULZ, A ;
HASSELBLATT, A .
NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 1989, 340 (06) :712-714
[38]   Activation of phosphatidylcholine-selective phospholipase C by I-1-imidazoline receptors in PC12 cells and rostral ventrolateral medulla [J].
Separovic, D ;
Kester, M ;
Haxhiu, MA ;
Ernsberger, P .
BRAIN RESEARCH, 1997, 749 (02) :335-339
[39]  
Separovic D., 1996, FASEB Journal, V10, pA416
[40]  
STURGESS NC, 1985, LANCET, V2, P474