Dietary polyunsaturated fats regulate rat liver sterol regulatory element binding proteins-1 and-2 in three distinct stages and by different mechanisms

被引:100
作者
Xu, J
Cho, H
O'Malley, S
Park, JHY
Clarke, SD [1 ]
机构
[1] Univ Texas, Div Nutr Sci, Austin, TX 78712 USA
[2] Univ Texas, Inst Mol & Cellular Biol, Austin, TX 78712 USA
[3] Hallym Univ, Div Life Sci, Chunchon 200702, South Korea
关键词
sterol regulatoty element binding protein polyunsaturated fatty acids; transcription; liver; rats;
D O I
10.1093/jn/132.11.3333
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Male Sprague-Dawley rats, trained to consume their daily energy needs in a single 3-h meal (0900-1200 h), were used to examine the hypothesis that polyunsaturated fatty acids (PUFA) lowered the nuclear content of sterol regulatory element binding protein (SREBP)-1 and/or -2 by suppressing the proteolytic release of mature SREBP from the membrane-anchored precursor pool. The nuclear concentrations of hepatic SREBP-1 and -2 were 50 and 42% lower (P < 0.05) in rats that consumed a single PUFA-supplemented meal (i.e., 10 g fish oil/100 g fat-free diet) than in rats fed the fat-free diet alone. This was paralleled by 63 and 52% reductions in the expression of the SREBP-1 and -2 target genes, fatty acid synthase and HMG-CoA synthase, respectively; but the marked increase in the amount of precursor SREBP-1 and -2 resulting from meal ingestion was unaffected. After the consumption of a second meal of fish oil, the nuclear level of mature SREBP-1 was only 16% of that in rats fed the fat-free diet, but the amount of nuclear SREBP-2 was not different from the level in rats fed the fat-free diet. Again, the sizes of the SREBP-1 and -2 precursor pools were not reduced. A decrease in the hepatic concentration of precursor SREBP-1 did not occur until rats had consumed 5 meals of fish oil. At this point, the nuclear content of SREBP-2 was actually twofold higher (P < 0.05) in rats fed fish oil or safflower oil, but the amount of precursor SREBP-2 was unaffected. These data indicate that PUFA suppress the in vivo proteolytic release of SREBP-1 and -2, but the effect on SREBP-2 is transitory, possibly reflecting the ability of PUFA to enhance cholesterol losses via bile acid synthesis.
引用
收藏
页码:3333 / 3339
页数:7
相关论文
共 36 条
[1]   The fatty acid composition of skeletal muscle membrane phospholipid: Its relationship with the type of feeding and plasma glucose levels in young children [J].
Baur, LA ;
O'Connor, J ;
Pan, DA ;
Kriketos, AD ;
Storlien, LH .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1998, 47 (01) :106-112
[2]   SUPPRESSION OF RAT HEPATIC FATTY-ACID SYNTHASE AND S-14 GENE-TRANSCRIPTION BY DIETARY POLYUNSATURATED FAT [J].
BLAKE, WL ;
CLARKE, SD .
JOURNAL OF NUTRITION, 1990, 120 (12) :1727-1729
[3]   A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood [J].
Brown, MS ;
Goldstein, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11041-11048
[4]  
Cheema SK, 1997, J LIPID RES, V38, P315
[5]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[6]   POLYMER PROTOMER TRANSITION OF ACETYL-COA CARBOXYLASE AS A REGULATOR OF LIPOGENESIS IN RAT-LIVER [J].
CLARKE, BA ;
CLARKE, SD .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1982, 218 (01) :92-100
[7]   NUTRITIONAL CONTROL OF RAT-LIVER FATTY-ACID SYNTHASE AND S14 MESSENGER-RNA ABUNDANCE [J].
CLARKE, SD ;
ARMSTRONG, MK ;
JUMP, DB .
JOURNAL OF NUTRITION, 1990, 120 (02) :218-224
[8]   Polyunsaturated fatty acid regulation of gene transcription: A molecular mechanism to improve the metabolic syndrome [J].
Clarke, SD .
JOURNAL OF NUTRITION, 2001, 131 (04) :1129-1132
[9]   Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila [J].
Dobrosotskaya, IY ;
Seegmiller, AC ;
Brown, MS ;
Goldstein, JL ;
Rawson, RB .
SCIENCE, 2002, 296 (5569) :879-883
[10]   Unsaturated fatty acids down-regulate SREBP isoforms 1a and 1c by two mechanisms in HEK-293 cells [J].
Hannah, VC ;
Ou, JF ;
Luong, A ;
Goldstein, JL ;
Brown, MS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (06) :4365-4372