Direct and Indirect Impairment of Human Dendritic Cell Function by Virulent Francisella tularensis Schu S4

被引:67
作者
Chase, Jennifer C. [1 ]
Celli, Jean [2 ]
Bosio, Catharine M. [1 ]
机构
[1] NIAID, Immun Pulm Pathogens Sect, Intracellular Parasites Lab, Rocky Mt Labs,NIH, Hamilton, MT 59840 USA
[2] NIAID, Tularemia Pathogenesis Sect, Intracellular Parasites Lab, Rocky Mt Labs,NIH, Hamilton, MT 59840 USA
基金
美国国家卫生研究院;
关键词
PATHOGENICITY ISLAND; ENDOTOXIN TOLERANCE; PORPHYROMONAS-GINGIVALIS; MOLECULAR-MECHANISMS; BURKHOLDERIA-MALLEI; MEASLES-VIRUS; INFECTION; ACTIVATION; MICE; LIPOPOLYSACCHARIDE;
D O I
10.1128/IAI.00879-08
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The gram-negative, facultative intracellular bacterium Francisella tularensis causes acute, lethal pneumonic disease following infection with only 10 CFU. The mechanisms used by the bacterium to accomplish this in humans are unknown. Here, we demonstrate that virulent, type A F. tularensis strain Schu S4 efficiently infects and replicates in human myeloid dendritic cells (DCs). Despite exponential replication over time, Schu S4 failed to stimulate transforming growth factor beta, interleukin-10 (IL-10), IL-6, IL-1 beta, IL-12, tumor necrosis factor alpha, alpha interferon (IFN-alpha), and IFN-beta throughout the course of infection. Schu S4 also suppressed the ability of directly infected DCs to respond to different Toll-like receptor agonists. Furthermore, we also observed functional inhibition of uninfected bystander cells. This inhibition was mediated, in part, by a heat-stable bacterial component. Lipopolysaccharide (LPS) from Schu S4 was present in Schu S4-conditioned medium. However, Schu S4 LPS was weakly inflammatory and failed to induce suppression of DCs at concentrations below 10 mu g/ml, and depletion of Schu S4 LPS did not significantly alleviate the inhibitory effect of Schu S4-conditioned medium in uninfected human DCs. Together, these data show that type A F. tularensis interferes with the ability of a central cell type of the immune system, DCs, to alert the host of infection both intra-and extracellularly. This suggests that immune dysregulation by F. tularensis operates on a broader and more comprehensive scale than previously appreciated.
引用
收藏
页码:180 / 195
页数:16
相关论文
共 52 条
[1]   Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity [J].
Aliberti, J ;
Hieny, S ;
Sousa, CRE ;
Serhan, CN ;
Sher, A .
NATURE IMMUNOLOGY, 2002, 3 (01) :76-82
[2]   Inability of the Francisella tularensis lipopolysaccharide to mimic or to antagonize the induction of cell activation by endotoxins [J].
Ancuta, P ;
Pedron, T ;
Girard, R ;
Sandstrom, G ;
Chaby, R .
INFECTION AND IMMUNITY, 1996, 64 (06) :2041-2046
[3]   ANTIMICROBIAL SUSCEPTIBILITY TESTING OF FRANCISELLA-TULARENSIS WITH A MODIFIED MUELLER-HINTON BROTH [J].
BAKER, CN ;
HOLLIS, DG ;
THORNSBERRY, C .
JOURNAL OF CLINICAL MICROBIOLOGY, 1985, 22 (02) :212-215
[4]   Dendritic cells and the control of immunity [J].
Banchereau, J ;
Steinman, RM .
NATURE, 1998, 392 (6673) :245-252
[5]   Critical role for serum opsonins and complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in phagocytosis of Francisella tularensis by human dendritic cells (DC):: uptake of Francisella leads to activation of immature DC and intracellular survival of the bacteria [J].
Ben Nasr, Abdelhakim ;
Haithcoat, Judith ;
Masterson, Joseph E. ;
Gunn, John S. ;
Eaves-Pyles, Tonyia ;
Klimpel, Gary R. .
JOURNAL OF LEUKOCYTE BIOLOGY, 2006, 80 (04) :774-786
[6]   Active suppression of the pulmonary immune response by Francisella tularensis Schu4 [J].
Bosio, Catharine M. ;
Bielefeldt-Ohmann, Helle ;
Belisle, John T. .
JOURNAL OF IMMUNOLOGY, 2007, 178 (07) :4538-4547
[7]   Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation [J].
Bosio, CM ;
Aman, MJ ;
Grogan, C ;
Hogan, R ;
Ruthel, G ;
Negley, D ;
Mohamadzadeh, M ;
Bavari, S ;
Schmaljohn, A .
JOURNAL OF INFECTIOUS DISEASES, 2003, 188 (11) :1630-1638
[8]   Susceptibility to secondary Francisella tularensis live vaccine strain infection in B-cell-deficient mice is associated with neutrophilia but not with defects in specific T-cell-mediated immunity [J].
Bosio, CM ;
Elkins, KL .
INFECTION AND IMMUNITY, 2001, 69 (01) :194-203
[9]   Francisella tularensis induces aberrant activation of pulmonary dendritic cells [J].
Bosio, CM ;
Dow, SW .
JOURNAL OF IMMUNOLOGY, 2005, 175 (10) :6792-6801
[10]   Molecular and physical characterization of Burkholderia mallei O antigens [J].
Burtnick, MN ;
Brett, PJ ;
Woods, DE .
JOURNAL OF BACTERIOLOGY, 2002, 184 (03) :849-852