Remote sensing from the infrared atmospheric sounding interferometer instrument -: 2.: Simultaneous retrieval of temperature, water vapor, and ozone atmospheric profiles -: art. no. 4620

被引:56
作者
Aires, F
Rossow, WB
Scott, NA
Chédin, A
机构
[1] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[2] Ecole Polytech, Meteorol Dynam Lab, F-91128 Palaiseau, France
关键词
IASI; infrared interferometer; neural networks; principal component analysis;
D O I
10.1029/2001JD001591
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A fast algorithm is developed to retrieve temperature, water vapor, and ozone atmospheric profile from the high spectral resolution Infrared Atmospheric Sounding Interferometer spaceborne instrument. Compression, denoising, and pattern recognition algorithms have been developed in a companion paper [Aires et al., 2002b]. A principal component analysis neural network using this a guess information is developed here to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a climatological data set including rare events: temperature is retrieved with an error less than or equal to1 K, and total amount of water vapor has a mean percentage error between 5 and 7%. Atmospheric water vapor layers are retrieved with an error between 10 and 15% most of the time. The statistics of the ozone retrieval are too optimistic due to a lack of representation of ozone variability in our test data set.
引用
收藏
页数:12
相关论文
共 38 条
[21]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[22]  
Huang HL, 2001, J APPL METEOROL, V40, P365, DOI 10.1175/1520-0450(2001)040<0365:AOPCAT>2.0.CO
[23]  
2
[24]   Neural networks for seismic principal components analysis [J].
Huang, KY .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (01) :297-311
[25]  
Jolliffe I.T., 2002, PRINCIPAL COMPONENTS
[26]  
Krasnopolsky V., 1999, CAN J REMOTE SENS, V25, P486, DOI [10.1080/07038992.1999.10874747, DOI 10.1080/07038992.1999.10874747]
[27]   A neural network multiparameter algorithm for SSM/I ocean retrievals: Comparisons and validations [J].
Krasnopolsky, VM ;
Gemmill, WH ;
Breaker, LC .
REMOTE SENSING OF ENVIRONMENT, 2000, 73 (02) :133-142
[28]  
KRASNOPOLSKY VM, 1996, OMB CONTRIB, V137
[29]   Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances [J].
Matricardi, M ;
Saunders, R .
APPLIED OPTICS, 1999, 38 (27) :5679-5691
[30]   Remote sensing of global wetland dynamics with multiple satellite data sets [J].
Prigent, C ;
Matthews, E ;
Aires, F ;
Rossow, WB .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (24) :4631-4634