PbSe Nanocrystal Network Formation during Pyridine Ligand Displacement

被引:56
作者
Hanrath, Tobias [1 ]
Veldman, Dirk [2 ,3 ]
Choi, Joshua J. [1 ]
Christova, Christina G. [2 ,3 ]
Wienk, Martijn M. [2 ,3 ]
Janssen, Rene A. J. [2 ,3 ]
机构
[1] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[2] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Chem & Chem Engn, NL-5600 MB Eindhoven, Netherlands
关键词
semiconductor nanocrystals; surface chemistry; dipole mediated network formation; MULTIPLE EXCITON GENERATION; COLLOIDAL PBSE; SEMICONDUCTOR NANOCRYSTALS; SOLAR-CELLS; CORE/SHELL NANOCRYSTALS; GROWTH; PHOTOSTABILITY; DISPERSIONS; COMPOSITES; SOLIDS;
D O I
10.1021/am8001583
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solution phase pyridine treatment displaced oleic acid capping ligands form the surface of PbSe nanocrystals. During ligand displacement the nanostructure morphology dramatically changed from well-stabilized, individual nanocrystals to form crystallographically connected nanocrystal networks. The network morphology was governed by the diameter of the constituent nanocrystals. Larger nanocrystals showed dipolar alignment but maintained individual nanocrystal character, while smaller nanocrystals crystallographically fused along the < 100 > axis. Optical studies of nanocrystal thin films showed that pyridine ligand displacement quenches the nanocrystal photoluminescence. Blends of nanocrystals and conjugated polymer showed photoluminescence quenching of the polymer with increasing nanocyrstal content. The content of photoluminescence quenching was only weakly dependent on the nanocrystal size or surface chemistry, suggesting that the interaction between nanocrystal and polymer is mostly in the form of energy transfer rather than change transfer.
引用
收藏
页码:244 / 250
页数:7
相关论文
共 45 条
[1]   Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well [J].
Achermann, M ;
Petruska, MA ;
Kos, S ;
Smith, DL ;
Koleske, DD ;
Klimov, VI .
NATURE, 2004, 429 (6992) :642-646
[2]   Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles [J].
Cho, KS ;
Talapin, DV ;
Gaschler, W ;
Murray, CB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (19) :7140-7147
[3]   Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells [J].
Cui, DH ;
Xu, J ;
Zhu, T ;
Paradee, G ;
Ashok, S ;
Gerhold, M .
APPLIED PHYSICS LETTERS, 2006, 88 (18)
[4]   Optical properties of colloidal PbSe nanocrystals [J].
Du, H ;
Chen, CL ;
Krishnan, R ;
Krauss, TD ;
Harbold, JM ;
Wise, FW ;
Thomas, MG ;
Silcox, J .
NANO LETTERS, 2002, 2 (11) :1321-1324
[5]  
EFROS AL, 1982, SOV PHYS SEMICOND+, V16, P772
[6]   The electronic structure of semiconductor nanocrystals [J].
Efros, AL ;
Rosen, M .
ANNUAL REVIEW OF MATERIALS SCIENCE, 2000, 30 :475-521
[7]   Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots [J].
Ellingson, RJ ;
Beard, MC ;
Johnson, JC ;
Yu, PR ;
Micic, OI ;
Nozik, AJ ;
Shabaev, A ;
Efros, AL .
NANO LETTERS, 2005, 5 (05) :865-871
[8]   Charge separation and transport in conjugated polymer cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity [J].
Greenham, NC ;
Peng, XG ;
Alivisatos, AP .
SYNTHETIC METALS, 1997, 84 (1-3) :545-546
[9]   Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers [J].
Hanna, M. C. ;
Nozik, A. J. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (07)
[10]   Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals [J].
Hines, MA ;
Guyot-Sionnest, P .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (02) :468-471