Localized excitations and their thresholds

被引:37
作者
Kevrekidis, PG [1 ]
Rasmussen, KO
Bishop, AR
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 04期
关键词
D O I
10.1103/PhysRevE.61.4652
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a numerical method for identifying localized excitations in discrete nonlinear Schrodinger type models. This methodology, based on the application of a nonlinear iterative version of the Rayleigh-Ritz variational principle yields breather excitations in a very fast and efficient way in one or higher spatial dimensions. The typical convergence properties of the method are found to be super-linear, The usefulness of this technique is illustrated by studying the properties of the recently developed theoretical criteria for the excitation power thresholds for nonlinear modes.
引用
收藏
页码:4652 / 4655
页数:4
相关论文
共 22 条
[1]   Nonlinear dynamics of the Frenkel-Kontorova model [J].
Braun, OM ;
Kivshar, YS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 306 (1-2) :1-108
[2]  
CAI D, UNPUB
[3]   Breather mobility in discrete phi(4) nonlinear lattices [J].
Chen, D ;
Aubry, S ;
Tsironis, GP .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4776-4779
[4]   DYNAMICS AND THERMODYNAMICS OF A NONLINEAR MODEL FOR DNA DENATURATION [J].
DAUXOIS, T ;
PEYRARD, M ;
BISHOP, AR .
PHYSICAL REVIEW E, 1993, 47 (01) :684-695
[5]   THE DISCRETE SELF-TRAPPING EQUATION [J].
EILBECK, JC ;
LOMDAHL, PS ;
SCOTT, AC .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 16 (03) :318-338
[6]   ADIABATIC THEORY OF AN ELECTRON IN A DEFORMABLE CONTINUUM [J].
EMIN, D ;
HOLSTEIN, T .
PHYSICAL REVIEW LETTERS, 1976, 36 (06) :323-326
[7]   Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices [J].
Flach, S ;
Kladko, K ;
MacKay, RS .
PHYSICAL REVIEW LETTERS, 1997, 78 (07) :1207-1210
[8]   SOLITON-LIKE STATES IN A ONE-DIMENSIONAL NONLINEAR SCHRODINGER-EQUATION WITH A DETERMINISTIC APERIODIC POTENTIAL [J].
JOHANSSON, M ;
RIKLUND, R .
PHYSICAL REVIEW B, 1994, 49 (10) :6587-6600
[9]  
KEVREKIDIS PG, UNPUB
[10]   PEIERLS-NABARRO POTENTIAL BARRIER FOR HIGHLY LOCALIZED NONLINEAR MODES [J].
KIVSHAR, YS ;
CAMPBELL, DK .
PHYSICAL REVIEW E, 1993, 48 (04) :3077-3081