Analysis of Local Variation of Soil Surface Parameters With TerraSAR-X Radar Data Over Bare Agricultural Fields

被引:58
作者
Anguela, Thais Paris [1 ]
Zribi, Mehrez [2 ]
Baghdadi, Nicolas [3 ]
Loumagne, Cecile [4 ]
机构
[1] Observat Spatiales Ctr Natl Rech Sci, Atmospheres Lab, F-78140 Velizy Villacoublay, France
[2] CNRS, Ctr Etud Environm Terrestre & Planetaires, F-78140 Velizy Villacoublay, France
[3] Ctr Etud Machinisme Agr & Genie Rural Eaux & Fore, Unite Mixte Rech Terr Environm Teledetect & Infor, F-34196 Montpellier, France
[4] Ctr Etude Machinisme Agr & Genie Rural Eaux & For, Hydrosyst & Bioproc Res Unit, F-92163 Antony, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2010年 / 48卷 / 02期
关键词
Modeling; roughness; soil moisture; soil texture; TerraSAR-X; MOISTURE ESTIMATION; ROUGHNESS; MODEL; BACKSCATTERING; RETRIEVAL; SIMULATION; VALIDITY; SAR;
D O I
10.1109/TGRS.2009.2028019
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The objective of this paper is to analyze the sensitivity of very high resolution TerraSAR-X radar data taken over bare soils to surface soil parameters and to study the spatial variability of these parameters at a fine scale (within a field plot). The relationship between the backscattering coefficient and the soil's parameters (moisture, surface roughness, texture, and local topography) was examined by means of four satellite images, as well as ground truth measurements, of each of the three agricultural plots, recorded during several field campaigns in the winter and spring of 2008. TerraSAR images demonstrate high potential for the identification of local variations of roughness and texture. An approach for the estimation of local moisture is proposed using an empirical method adapted to the scale of an individual field. The results show that, by using TerraSAR-X data to study bare agricultural fields, local variations in soil moisture can be retrieved with a root-mean-square error of 0.05 cm(3) . cm(-3).
引用
收藏
页码:874 / 881
页数:8
相关论文
共 46 条
[11]   A note on the multiple scattering in an IEM model [J].
Chen, KS ;
Wu, TD ;
Tsay, MK ;
Fung, AK .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (01) :249-256
[12]   A STUDY OF THE VALIDITY OF THE INTEGRAL-EQUATION MODEL BY MOMENT METHOD SIMULATION - CYLINDRICAL CASE [J].
CHEN, MF ;
CHEN, KS ;
FUNG, AK ;
CHEN, PM .
REMOTE SENSING OF ENVIRONMENT, 1989, 29 (03) :217-228
[13]  
Fung A. K., 1994, Microwave scattering and emission models and their applications
[14]   BACKSCATTERING FROM A RANDOMLY ROUGH DIELECTRIC SURFACE [J].
FUNG, AK ;
LI, ZQ ;
CHEN, KS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (02) :356-369
[15]   Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR [J].
Hajnsek, Irena ;
Jagdhuber, Thomas ;
Schcoen, Helmet ;
Papathanassiou, Konstantinos Panagiotis .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (02) :442-454
[16]  
HARRINGTON RF, 1968, SER SERIES ELECTROMA
[17]   Remote sensing applications to hydrology: Soil moisture [J].
Jackson, TJ ;
Schmugge, J ;
Engman, ET .
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 1996, 41 (04) :517-530
[18]   Soil moisture estimation from ERS/SAR data:: Toward an operational methodology [J].
Le Hégarat-Mascle, S ;
Zribi, M ;
Alem, F ;
Weisse, A ;
Loumagne, C .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (12) :2647-2658
[19]   A generalized power law spectrum and its applications to the backscattering of soil surfaces based on the integral equation model [J].
Li, Q ;
Shi, JC ;
Chen, KS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (02) :271-280
[20]   Using a priori information to improve soil moisture retrieval from ENVISAT ASAR AP data in semiarid regions [J].
Mattia, F ;
Satalino, G ;
Dente, L ;
Pasquariello, G .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (04) :900-912