The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition

被引:421
作者
Savagner, P [1 ]
Yamada, KM [1 ]
Thiery, JP [1 ]
机构
[1] INST CURIE,CNRS,F-75231 PARIS 05,FRANCE
关键词
D O I
10.1083/jcb.137.6.1403
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Epithelial-mesenchymal transition (EMT) is an essential morphogenetic process during embryonic development. It can be induced in vitro by hepatocyte growth factor/scatter factor (HGF/SF), or by FGF-1 in our NBT-II cell model for EMT. We tested for a central role in EMT of a zinc-finger protein called Slug. Slug mRNA and protein levels were increased transiently in FGF-1-treated NBT-II cells. Transient or stable transfection of Slug cDNA in NBT-II cells resulted in a striking disappearance of the desmosomal markers desmoplakin and desmoglein from cell-cell contact areas, mimicking the initial steps of FGF-1 or HGF/SF-induced EMT. Stable transfectant cells expressed Slug protein and were less epithelial, with increased cell spreading and cell-cell separation in subconfluent cultures. Interestingly, NBT-II cells transfected with antisense Slug cDNA were able to resist EMT induction by FGF-1 or even HGF/SF. This antisense effect was suppressed by retransfection with Slug sense cDNA. Our results indicate that Slug induces the first phase of growth factor-induced EMT, including desmosome dissociation, cell spreading, and initiation of cell separation. Moreover, the antisense inhibition experiments suggest that Slug is also necessary for EMT.
引用
收藏
页码:1403 / 1419
页数:17
相关论文
共 68 条