Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

被引:833
作者
Liu, Yayuan [1 ]
Lin, Dingchang [1 ]
Liang, Zheng [1 ]
Zhao, Jie [1 ]
Yan, Kai [1 ]
Cui, Yi [1 ,2 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
关键词
ELECTROCHEMICAL-BEHAVIOR; CURRENT COLLECTORS; BATTERIES; ELECTRODES; ELECTROLYTES; DEPOSITION; MECHANISMS; LI7LA3ZR2O12; PERFORMANCE; SYSTEMS;
D O I
10.1038/ncomms10992
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm(-2) in both carbonate and ether electrolyte. The advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.
引用
收藏
页数:9
相关论文
共 46 条
[41]   Electrolytes and Interphases in Li-Ion Batteries and Beyond [J].
Xu, Kang .
CHEMICAL REVIEWS, 2014, 114 (23) :11503-11618
[42]   Lithium metal anodes for rechargeable batteries [J].
Xu, Wu ;
Wang, Jiulin ;
Ding, Fei ;
Chen, Xilin ;
Nasybutin, Eduard ;
Zhang, Yaohui ;
Zhang, Ji-Guang .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :513-537
[43]   Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode [J].
Yan, Kai ;
Lee, Hyun-Wook ;
Gao, Teng ;
Zheng, Guangyuan ;
Yao, Hongbin ;
Wang, Haotian ;
Lu, Zhenda ;
Zhou, Yu ;
Liang, Zheng ;
Liu, Zhongfan ;
Chu, Steven ;
Cui, Yi .
NANO LETTERS, 2014, 14 (10) :6016-6022
[44]   Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes [J].
Yang, Chun-Peng ;
Yin, Ya-Xia ;
Zhang, Shuai-Feng ;
Li, Nian-Wu ;
Guo, Yu-Guo .
NATURE COMMUNICATIONS, 2015, 6
[45]   A novel high energy density rechargeable lithium/air battery [J].
Zhang, Tao ;
Imanishi, Nobuyuki ;
Shimonishi, Yuta ;
Hirano, Atsushi ;
Takeda, Yasuo ;
Yamamoto, Osamu ;
Sammes, Nigel .
CHEMICAL COMMUNICATIONS, 2010, 46 (10) :1661-1663
[46]  
Zheng GY, 2014, NAT NANOTECHNOL, V9, P618, DOI [10.1038/NNANO.2014.152, 10.1038/nnano.2014.152]