Support vector machines for spatiotemporal tornado prediction

被引:16
作者
Adrianto, Indra [1 ]
Trafalis, Theodore B. [1 ]
Lakshmanan, Valliappa [2 ,3 ]
机构
[1] Univ Oklahoma, Sch Ind Engn, Norman, OK 73019 USA
[2] Univ Oklahoma, CIMMS, Norman, OK 73072 USA
[3] Natl Severe Storms Lab, Norman, OK 73072 USA
基金
美国国家科学基金会;
关键词
support vector machines; tornado prediction; fuzzy logic;
D O I
10.1080/03081070601068629
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The use of support vector machines (SVMs) for predicting the location and time of tornadoes is presented. In this paper, we extend the work by Lakshmanan et al. ( Proceedings of 2005 IEEE international joint conference on neural networks ( Montreal, Canada), 3, 2005a, 1642-1647) to use a set of 33 storm days and introduce some variations that improve the results. The goal is to estimate the probability of a tornado event at a particular spatial location within a given time window. We utilize a least-squares methodology to estimate shear, quality control of radar reflectivity, morphological image processing to estimate gradients, fuzzy logic to generate compact measures of tornado possibility and SVM classification to generate the final spatiotemporal probability field. On the independent test set, this method achieves a Heidke's skill score of 0.60 and a critical success index of 0.45.
引用
收藏
页码:759 / 776
页数:18
相关论文
共 29 条
  • [1] ADRIANTO I, 2005, 21 INT C INT INF PRO
  • [2] Evaluating the generalization ability of support vector machines through the bootstrap
    Anguita, D
    Boni, A
    Ridella, S
    [J]. NEURAL PROCESSING LETTERS, 2000, 11 (01) : 51 - 58
  • [3] [Anonymous], 1994, An introduction to the bootstrap: CRC press
  • [4] [Anonymous], 1999, COMPREHENSIVE FDN
  • [5] Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
  • [6] Knowledge-based analysis of microarray gene expression data by using support vector machines
    Brown, MPS
    Grundy, WN
    Lin, D
    Cristianini, N
    Sugnet, CW
    Furey, TS
    Ares, M
    Haussler, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) : 262 - 267
  • [7] BROWNING PR, 2002, 16 C PROB STAT ATM S
  • [8] A tutorial on Support Vector Machines for pattern recognition
    Burges, CJC
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 121 - 167
  • [9] DECKER TB, 2004, THESIS U OKLAHOMA
  • [10] Donaldson RJ., 1975, 9 C SEVERE LOCAL STO, P321