Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis

被引:68
作者
Yin, Fang Fang [2 ]
Bailey, Scott [1 ,2 ]
Innis, C. Axel [1 ,2 ]
Ciubotaru, Mihai [3 ]
Kamtekar, Satwik [2 ]
Steitz, Thomas A. [1 ,2 ,4 ]
Schatz, David G. [1 ,3 ]
机构
[1] Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06510 USA
[2] Yale Univ, Sch Med, Dept Mol Biophys & Biochem, New Haven, CT 06510 USA
[3] Yale Univ, Sch Med, Dept Immunobiol, New Haven, CT USA
[4] Yale Univ, Dept Chem, New Haven, CT USA
基金
美国国家卫生研究院;
关键词
RECOMBINATION-ACTIVATING GENE; SIGNAL SEQUENCE COMPLEX; V(D)J RECOMBINATION; 12/23; RULE; HAIRPIN FORMATION; CLEAVAGE; PROTEINS; INITIATION; DISTINCT; NICKING;
D O I
10.1038/nsmb.1593
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The products of recombination-activating genes RAG1 and RAG2 mediate the assembly of antigen receptor genes during lymphocyte development in a process known as V(D)J recombination. Lack of structural information for the RAG proteins has hindered mechanistic studies of this reaction. We report here the crystal structure of an essential DNA binding domain of the RAG1 catalytic core bound to its nonamer DNA recognition motif. The RAG1 nonamer binding domain (NBD) forms a tightly interwoven dimer that binds and synapses two nonamer elements, with each NBD making contact with both DNA molecules. Biochemical and biophysical experiments confirm that the two nonamers are in close proximity in the RAG1/2-DNA synaptic complex and demonstrate the functional importance of the protein-DNA contacts revealed in the structure. These findings reveal a previously unsuspected function for the NBD in DNA synapsis and have implications for the regulation of DNA binding and cleavage by RAG1 and RAG2.
引用
收藏
页码:499 / 508
页数:10
相关论文
共 60 条
[51]   The DDE motif in RAG-1 is contributed in trans to a single active site that catalyzes the nicking and transesterification steps of V(D)J recombination [J].
Swanson, PC .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (02) :449-458
[52]   SOLVE and RESOLVE: automated structure solution, density modification, and model building [J].
Terwilliger, T .
JOURNAL OF SYNCHROTRON RADIATION, 2004, 11 :49-52
[53]   Maximum-likelihood density modification [J].
Terwilliger, TC .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2000, 56 :965-972
[54]   SOMATIC GENERATION OF ANTIBODY DIVERSITY [J].
TONEGAWA, S .
NATURE, 1983, 302 (5909) :575-581
[55]   Stimulation of V(D)J cleavage by high mobility group proteins [J].
vanGent, DC ;
Hiom, K ;
Paull, TT ;
Gellert, M .
EMBO JOURNAL, 1997, 16 (10) :2665-2670
[56]   The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination [J].
vanGent, DC ;
Ramsden, DA ;
Gellert, M .
CELL, 1996, 85 (01) :107-113
[57]   Similarities between initiation of V(D)J recombination and retroviral integration [J].
vanGent, DC ;
Mizuuchi, K ;
Gellert, M .
SCIENCE, 1996, 271 (5255) :1592-1594
[58]   The RAG-HMG1 complex enforces the 12/23 rule of V(D)J recombination specifically at the double-hairpin formation step [J].
West, RB ;
Lieber, MR .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (11) :6408-6415
[59]   The nicking step in V(D)J recombination is independent of synapsis: Implications for the immune repertoire [J].
Yu, KF ;
Lieber, MR .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (21) :7914-7921
[60]   Transposition of hAT elements links transposable elements and V(D)J recombination [J].
Zhou, LQ ;
Mitra, R ;
Atkinson, PW ;
Hickman, AB ;
Dyda, F ;
Craig, NL .
NATURE, 2004, 432 (7020) :995-1001