Distributed state estimation of a counter current heat exchanger under varying flow rate

被引:16
作者
Estel, L
Bagui, F
Abdelghani-Idrissi, MA
Thenard, C
机构
[1] Insa Rouen, Plateforme Simulat & Optimisat Proc Ind Chim, F-76131 Mont St Aignan, France
[2] Univ Rouen, IUT, F-76821 Mont St Aignan, France
关键词
heat exchanger; partial state; observer; distributed parameter systems; bilinear systems;
D O I
10.1016/S0098-1354(00)00301-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper deals with an observer built for distributed parameter systems described by bilinear representation. The estimator is based on combination of the Luenberger's observer extension and the MacCormack's numerical method for resolution of the partial differential equations. This technique consists on distributing the state in a suite of vectors called partial states, which are estimated using a predictor and a corrector. The iterative predictor scans the distributed system to evaluate its internal states and the corrector scans backward to adjust the states estimation. The order of the partial state matrix remains unchanged while the state vector order increases according to the spatial discretisation step. Furthermore, this observer is applied to a coaxial counter current heat exchanger in order to estimate the temperatures of the two fluids and the separating wall, under varying liquids flow rates. This observer is experimentally validated for different positions along the counter current heat exchanger. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 25 条
[1]  
ABDELGHANIIDRIS.MA, 1995, C FRANC QUEB THERM S
[2]  
BAGUI F, 1998, THESIS U ROUEN
[3]   NOTE ON WEAK STABILIZABILITY OF CONTRACTION SEMIGROUPS [J].
BENCHIMOL, CD .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (03) :373-379
[4]   ABSOLUTE STABILITY APPROACH TO STOCHASTIC STABILITY OF INFINITE-DIMENSIONAL NONLINEAR-SYSTEMS [J].
BRUSIN, VA ;
UGRINOVSKII, VA .
AUTOMATICA, 1995, 31 (10) :1453-1458
[5]   STABILIZATION OF NONLINEAR-SYSTEMS - A BILINEAR APPROACH [J].
CHABOUR, R ;
SALLET, G ;
VIVALDA, JC .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1993, 6 (03) :224-246
[6]   Robust control of hyperbolic PDE systems [J].
Christofides, PD ;
Daoutidis, P .
CHEMICAL ENGINEERING SCIENCE, 1998, 53 (01) :85-105
[7]   Feedback control of hyperbolic PDE systems [J].
Christofides, PD ;
Daoutidis, P .
AICHE JOURNAL, 1996, 42 (11) :3063-3086
[8]  
Curtain RF, 1995, An Introduction to Infinite-Dimensional Linear Systems Theory
[9]  
De Brucq D., 1988, Automatique Productique Informatique Industrielle, V22, P357
[10]  
ELJAI A, 1990, AUTOMATIQUE SYSTEMS