ABSOLUTE STABILITY APPROACH TO STOCHASTIC STABILITY OF INFINITE-DIMENSIONAL NONLINEAR-SYSTEMS

被引:7
作者
BRUSIN, VA
UGRINOVSKII, VA
机构
[1] UNIV HAIFA,INST EVOLUT,IL-31905 HAIFA,ISRAEL
[2] RADIOPHYS RES INST,NIZHNII NOVGOROD 603600,RUSSIA
[3] NIZHNY NOVGOROD STATE ARCHITECTURAL & BLDG ACAD,NIZHNII NOVGOROD 603600,RUSSIA
关键词
ABSOLUTE STABILITY; DISTRIBUTED PARAMETER SYSTEMS; LYAPUNOV METHODS; NONLINEAR EQUATIONS; STABILITY CRITERIA; STOCHASTIC EVOLUTION EQUATIONS;
D O I
10.1016/0005-1098(95)00063-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent applications of absolute stability methods to robustness analysis have led to a rebirth of interest in this topic. This paper is concerned with the robust stability of feedback distributed parameter systems against nonlinear and random disturbances. Our analysis is based on the Lyapunov direct method. To derive a stochastic Lyapunov function, we introduce the special stochastic infinite-dimensional counterparts of the Kalman-Yakubovich lemma. They are proved by use of dynamic programming methods in combination with the properties of Hilbert-space-valued Wiener processes. Examples exhibit extensions of the Popov and circle criteria to the feedback stochastic heat and delay equations, respectively.
引用
收藏
页码:1453 / 1458
页数:6
相关论文
共 17 条
[1]  
Brusin V. A., 1976, Prikladnaya Matematika i Mekhanika, V40, P947
[2]  
BRUSIN VA, 1987, SIBERIAN MATH J+, V28, P381
[3]  
BRUSIN VA, 1981, SIB MAT ZH, V22, P57
[4]  
CURTAIN RF, 1978, LECTURE NOTES CONTRO, V8
[5]  
Doob J. L., 1953, STOCHASTIC PROCESSES
[7]   DYNAMIC-PROGRAMMING APPROACH TO STOCHASTIC EVOLUTION EQUATIONS [J].
ICHIKAWA, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (01) :152-174
[8]  
Ichikawa A., 1984, Stochastics, V12, P1, DOI 10.1080/17442508408833293
[9]   EQUIVALENCE OF LP STABILITY AND EXPONENTIAL STABILITY FOR A CLASS OF NONLINEAR SEMIGROUPS [J].
ICHIKAWA, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (07) :805-815
[10]   ABSOLUTE STABILITY OF A STOCHASTIC EVOLUTION EQUATION. [J].
Ichikawa, Akira .
Stochastics, 1983, 11 (1-2) :143-158