Simulation of hydrogen adsorption in carbon nanotubes

被引:24
作者
Cracknell, RF [1 ]
机构
[1] Shell Global Solut UK, Chester CH1 3SH, Cheshire, England
关键词
D O I
10.1080/00268970210130236
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Computer simulations are reported of hydrogen adsorption in multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs). The gas-solid interaction was modelled both as pure dispersion forces and also with a hypothetical model for chemisorption introduced in a previous paper (Cracknell, R., F., 2001, Phys. Chem. chem. Phys., 3, 2091). A two-centre model for hydrogen was employed and the grand canonical Monte Carlo methodology was used throughout. Uptake of hydrogen in the internal space of a carbon nanotube is predicted to be lower than in the optimal graphitic nanofibre with slitlike pores (provided the gas-solid potential is consistent). Part of the difference arises from the assumption of pore surface area used in converting the raw simulation data to gravimetric adsorption; however, the majority of the differences can be attributed to the curvature of the pore. This reduces the uptake of hydrogen (on a gravimetric basis) in spite of deepening the potential minimum inside the pore associated with dispersion forces. It is concluded that for the uptake of hydrogen in SWNTs of 5-10% reported by Heben (DILLON, A. C., JONES, K. M., BEKKEDAHL, T. A., KIANG, C. H., BETHUNE, D. S., and HEBEN, M. J., 1997, Nature, 386, 377), gas-solid forces other than dispersion forces are required and most of the adsorption must occur in the interstices between SWNTs.
引用
收藏
页码:2079 / 2086
页数:8
相关论文
共 27 条
[1]  
Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]  
CHAMBERS A, 1998, J PHYS CHEM B, V102, P4235
[3]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93
[4]   Mechanism of hydrogen sorption in single-walled carbon nanotubes [J].
Cheng, H ;
Pez, GP ;
Cooper, AC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (24) :5845-5846
[5]   Molecular simulation of hydrogen adsorption in graphitic nanofibres [J].
Cracknell, RF .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (11) :2091-2097
[6]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[7]   Hydrogen storage using carbon adsorbents: past, present and future [J].
Dillon, AC ;
Heben, MJ .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (02) :133-142
[8]  
DILLON AC, 2000, P 2000 US DOE HYDR P
[9]  
Dresselhaus M. S., 1996, SCI FULLERENES CARBO
[10]   Molecular modeling of adsorptive energy storage: Hydrogen storage in single-walled carbon nanotubes [J].
Gordon, PA ;
Saeger, PB .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (12) :4647-4655