Pericytes and the pathogenesis of diabetic retinopathy

被引:473
作者
Hammes, HP
Lin, JH
Renner, O
Shani, M
Lundqvist, A
Betsholtz, C
Brownlee, M
Deutsch, U
机构
[1] Univ Heidelberg, Fac Med, Med Clin 5, D-68135 Mannheim, Germany
[2] Ctr Nacl Invest Oncol, Madrid, Spain
[3] Volcani Ctr, Inst Anim Sci, Bet Dagan, Israel
[4] Gothenburg Univ, Dept Med Biochem, Gothenburg, Sweden
[5] Albert Einstein Coll Med, Bronx, NY 10467 USA
[6] Max Planck Inst Vasc Biol, Munster, Germany
关键词
D O I
10.2337/diabetes.51.10.3107
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Pericytes provide vascular stability and control endothelial proliferation. Pericyte loss, microaneurysms, and acellular capillaries are characteristic for the diabetic retina. Platelet-derived growth factor (PDGF)-B is involved in pericyte recruitment, and brain capillaries of mice with a genetic ablation of PDGF-B show pericyte loss and microaneurysms. We investigated the role of capillary coverage with pericytes in early diabetic retinopathy and the contribution to proliferative retinopathy using mice with a single functional allele of PDGF-B (PDGF-B+/- mice). As assessed by quantitative morphometry of retinal digest preparations, pericyte numbers in nondiabetic PDGF-B+/- mice were reduced by 30% compared with wild-type mice, together with a small but significant increase in acellular capillaries. Pericyte numbers were reduced by 40% in diabetic wild-type mice compared with nondiabetic wild-type controls. Pericyte numbers were decreased by 50% in diabetic PDGF-B+/- mice compared with nondiabetic wild-type littermates, and the incidence of acellular capillaries was increased 3.5-fold when compared with nondiabetic PDGF-B+/- mice. To investigate the effect of pericyte loss in the context of ongoing angiogenesis, we subjected mice to hypoxia-induced proliferative retinopathy. As a result, PDGF-B+/- mice developed twice as many new blood vessels as their wild-type littermates. We conclude that retinal capillary coverage with pericytes is crucial for the survival of endothelial cells, particularly under stress conditions such as diabetes. At high vascular endothelial growth factor levels, such as those in the retinopathy of prematurity model, pericyte deficiency leads to reduced inhibition of endothelial proliferation in vivo.
引用
收藏
页码:3107 / 3112
页数:6
相关论文
共 35 条
[1]   Diabetic retinopathy [J].
Aiello, LP ;
Gardner, TW ;
King, GL ;
Blankenship, G ;
Cavallerano, JD ;
Ferris, FL ;
Klein, R .
DIABETES CARE, 1998, 21 (01) :143-156
[2]   VASCULAR ENDOTHELIAL GROWTH-FACTOR ACTS AS A SURVIVAL FACTOR FOR NEWLY FORMED RETINAL-VESSELS AND HAS IMPLICATIONS FOR RETINOPATHY OF PREMATURITY [J].
ALON, T ;
HEMO, I ;
ITIN, A ;
PEER, J ;
STONE, J ;
KESHET, E .
NATURE MEDICINE, 1995, 1 (10) :1024-1028
[3]   AN ACTIVATED FORM OF TRANSFORMING GROWTH FACTOR-BETA IS PRODUCED BY COCULTURES OF ENDOTHELIAL-CELLS AND PERICYTES [J].
ANTONELLIORLIDGE, A ;
SAUNDERS, KB ;
SMITH, SR ;
DAMORE, PA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (12) :4544-4548
[4]   Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal [J].
Benjamin, LE ;
Golijanin, D ;
Itin, A ;
Pode, D ;
Keshet, E .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (02) :159-165
[5]  
Benjamin LE, 1998, DEVELOPMENT, V125, P1591
[6]  
Betsholtz C, 1995, INT J DEV BIOL, V39, P817
[7]   VEGF gene therapy: stimulating angiogenesis or angioma-genesis? [J].
Carmeliet, P .
NATURE MEDICINE, 2000, 6 (10) :1102-1103
[8]   Role of tissue factor in embryonic blood vessel development [J].
Carmeliet, P ;
Mackman, N ;
Moons, L ;
Luther, T ;
Gressens, P ;
VanVlaenderen, I ;
Demunck, H ;
Kasper, M ;
Breier, G ;
Evrard, P ;
Muller, M ;
Risau, W ;
Edgington, T ;
Collen, D .
NATURE, 1996, 383 (6595) :73-75
[9]   RETINAL VASCULAR PATTERNS .4. DIABETIC RETINOPATHY [J].
COGAN, DG ;
KUWABARA, T ;
TOUSSAINT, D .
ARCHIVES OF OPHTHALMOLOGY, 1961, 66 (03) :366-&
[10]   PATHOGENESIS OF DIABETIC-RETINOPATHY [J].
ENGERMAN, RL .
DIABETES, 1989, 38 (10) :1203-1206