Acetaminophen protects hippocampal neurons and PC12 cultures from amyloid β-peptides induced oxidative stress and reduces NF-κB activation

被引:75
作者
Bisaglia, M
Venezia, V
Piccioli, P
Stanzione, S
Porcile, C
Russo, C
Mancini, F
Milanese, C
Schettini, G
机构
[1] Natl Canc Res Inst, Adv Biotechnol Ctr, I-16132 Genoa, Italy
[2] Univ Genoa, Dept Oncol, Sect Pharmacol, Genoa, Italy
[3] ACRAF Angelini Ric, Rome, Italy
关键词
acetaminophen; amyloid; neuronal cultures; oxidative stress; NF-kappa B;
D O I
10.1016/S0197-0186(01)00136-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The present findings show that an atypical non-steroidal anti-inflammatory drug, such as acetaminophen, retains the ability to recover amyloid beta-peptides driven neuronal apoptosis through the impairment of oxidative stress. Moreover, this compound reduces the increased NIF-kappaB binding activity, which occurs in these degenerative conditions. Therapeutic interventions aimed at reducing the inflammatory response in Alzheimer's disease (AD) recently suggested the application of non-steroidal anti-inflammatory drugs. Although the anti-inflammatory properties of acetaminophen are controversial, it emerged that in an amyloid-driven astrocytoma cell degeneration model acetaminophen proved to be effective. On these bases, we analyzed the role of acetaminophen against the toxicity exerted by different Abeta-peptides on rat primary hippocampal neurons and on a rat pheochromocytoma cell line. We found a consistent protection from amyloid beta-fragments 1-40 and 1-42-induced impairment of mitochondrial redox activity on both cell cultures, associated with a marked reduction of apoptotic nuclear fragmentation. An antioxidant component of the protective activity emerged from the analysis of the reduction of phospholipid peroxidation, and also from a significant reduction of cytoplasmic accumulation of peroxides in the pheochromocytoma cell line. Moreover, activation of NF-kappaB by amyloid-derived peptides was greatly impaired by acetaminophen pre-treatment in hippocampal cells. This evidence points out antioxidant and anti-transcriptional properties of acetaminophen besides the known capability to interfere with inflammation within the central nervous system, and suggests that it can be exploited as a possible therapeutic approach against AD. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 73 条
[1]   THE MECHANISMS OF ACTION OF NONSTEROIDAL ANTIINFLAMMATORY DRUGS [J].
ABRAMSON, SB ;
WEISSMANN, G .
ARTHRITIS AND RHEUMATISM, 1989, 32 (01) :1-9
[2]  
Anrather D, 1997, J IMMUNOL, V159, P5620
[3]   VITAMIN-E PROTECTS NERVE-CELLS FROM AMYLOID BETA-PROTEIN TOXICITY [J].
BEHL, C ;
DAVIS, J ;
COLE, GM ;
SCHUBERT, D .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1992, 186 (02) :944-950
[4]   HYDROGEN-PEROXIDE MEDIATES AMYLOID-BETA PROTEIN TOXICITY [J].
BEHL, C ;
DAVIS, JB ;
LESLEY, R ;
SCHUBERT, D .
CELL, 1994, 77 (06) :817-827
[5]  
Bisaglia M, 2000, J NEUROCHEM, V74, P1197
[6]   Interaction of indomethacin with cytokine production in whole blood. Potential mechanism for a brain-protective effect [J].
Bour, AMJJ ;
Westendorp, RGJ ;
Laterveer, JC ;
Bollen, ELEM ;
Remarque, EJ .
EXPERIMENTAL GERONTOLOGY, 2000, 35 (08) :1017-1024
[7]   SURVIVAL AND GROWTH OF HIPPOCAMPAL-NEURONS IN DEFINED MEDIUM AT LOW-DENSITY - ADVANTAGES OF A SANDWICH CULTURE TECHNIQUE OR LOW OXYGEN [J].
BREWER, GJ ;
COTMAN, CW .
BRAIN RESEARCH, 1989, 494 (01) :65-74
[8]   METHODOLOGICAL VARIABLES IN THE ASSESSMENT OF BETA-AMYLOID NEUROTOXICITY [J].
BUSCIGLIO, J ;
LORENZO, A ;
YANKNER, BA .
NEUROBIOLOGY OF AGING, 1992, 13 (05) :609-612
[9]   Elevated oxidative stress in models of normal brain aging and Alzheimer's disease [J].
Butterfield, DA ;
Howard, B ;
Yatin, S ;
Koppal, T ;
Drake, J ;
Hensley, K ;
Aksenov, M ;
Aksenova, M ;
Subramaniam, R ;
Varadarajan, S ;
Harris-White, ME ;
Pedigo, NW ;
Carney, JM .
LIFE SCIENCES, 1999, 65 (18-19) :1883-1892
[10]   BETA-AMYLOID OF ALZHEIMERS-DISEASE INDUCES REACTIVE GLIOSIS THAT INHIBITS AXONAL OUTGROWTH [J].
CANNING, DR ;
MCKEON, RJ ;
DEWITT, DA ;
PERRY, G ;
WUJEK, JR ;
FREDERICKSON, RCA ;
SILVER, J .
EXPERIMENTAL NEUROLOGY, 1993, 124 (02) :289-298