Entangled subspaces and quantum symmetries

被引:4
作者
Bracken, AJ [1 ]
机构
[1] Univ Queensland, Dept Math, Ctr Math Phys, Brisbane, Qld 4072, Australia
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 05期
关键词
D O I
10.1103/PhysRevA.69.052331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize its entanglement, so that a first subspace is more entangled than a second, if the Schmidt string of the second majorizes the Schmidt string of the first. The idea is applied to the antisymmetric and symmetric tensor products of a finite-dimensional Hilbert space with itself, and also to the tensor product of an angular momentum j with a spin 1/2. When adapted to the subspaces of states of the nonrelativistic hydrogen atom with definite total angular momentum (orbital plus spin), within the space of bound states with a given total energy, this leads to a complete ordering of those subspaces by their Schmidt strings.
引用
收藏
页码:052331 / 1
页数:7
相关论文
共 14 条
[1]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[2]  
Edmonds A. R., 2016, Angular Momentum in Quantum Mechanics
[3]  
Horodecki M, 2001, QUANTUM INF COMPUT, V1, P3
[4]  
Marshall A., 1979, Inequalities: Theory of Majorization and Its Applications
[5]  
NIELSEN MA, 1998, QUANTPH0011036 U NEW
[6]  
NIELSEN MF, UNPUB
[7]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[8]   Universal state inversion and concurrence in arbitrary dimensions [J].
Rungta, P ;
Buzek, V ;
Caves, CM ;
Hillery, M ;
Milburn, GJ .
PHYSICAL REVIEW A, 2001, 64 (04) :423151-4231513
[9]   Quantifying entanglement [J].
Vedral, V ;
Plenio, MB ;
Rippin, MA ;
Knight, PL .
PHYSICAL REVIEW LETTERS, 1997, 78 (12) :2275-2279
[10]   Computable measure of entanglement [J].
Vidal, G ;
Werner, RF .
PHYSICAL REVIEW A, 2002, 65 (03) :1-11