Universal state inversion and concurrence in arbitrary dimensions

被引:675
作者
Rungta, P [1 ]
Buzek, V
Caves, CM
Hillery, M
Milburn, GJ
机构
[1] Univ New Mexico, Dept Phys & Astron, Ctr Adv Studies, Albuquerque, NM 87131 USA
[2] Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
[3] CUNY Hunter Coll, Dept Phys & Astron, New York, NY 10021 USA
[4] Univ Queensland, Ctr Quantum Comp Technol, St Lucia, Qld 4072, Australia
[5] Slovak Acad Sci, Inst Phys, Bratislava 84228, Slovakia
[6] Masaryk Univ, Fac Informat, Brno 60200, Czech Republic
来源
PHYSICAL REVIEW A | 2001年 / 64卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.64.042315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Wootters [Phys. Rev. Lett. 80, 2245 (1998)] has given an explicit formula for the entanglement of formation of two qubits in terms of what he calls the concurrence of the joint density operator. Wootters's concurrence is defined with the help of the superoperator that flips the spin of a qubit. We generalize the spin-flip superoperator to a "universal inverter," which acts on quantum systems of arbitrary dimension, and we introduce the corresponding generalized concurrence for joint pure states of D-1 X D-2 bipartite quantum systems. We call this generalized concurrence the I concurrence to emphasize its relation to the universal inverter. The universal inverter, which is a positive, but not completely positive superoperator, is closely related to the completely positive universal-NOT superoperator, the quantum analogue of a classical NOT gate. We present a physical realization of the universal-NOT Superoperator.
引用
收藏
页码:423151 / 4231513
页数:13
相关论文
共 18 条
[1]  
Alicki R., 2007, Volume 717 of Lecture Notes in Physics, V717
[2]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[5]   Quantum-information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit [J].
Braunstein, SL ;
Buzek, V ;
Hillery, M .
PHYSICAL REVIEW A, 2001, 63 (05) :523131-5231310
[6]  
Buzek V, 1999, PHYS REV A, V60, pR2626, DOI 10.1103/PhysRevA.60.R2626
[7]   Universal-NOT gate [J].
Buzek, V ;
Hillery, M ;
Werner, F .
JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) :211-232
[8]   Quantum error correction and reversible operations [J].
Caves, CM .
JOURNAL OF SUPERCONDUCTIVITY, 1999, 12 (06) :707-718
[9]   Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement [J].
Derka, R ;
Buzek, V ;
Ekert, AK .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1571-1575
[10]   Entanglement of a pair of quantum bits [J].
Hill, S ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1997, 78 (26) :5022-5025