Structural classification of protein kinases using 3D molecular interaction field analysis of their ligand binding sites: Target family landscapes

被引:86
作者
Naumann, T [1 ]
Matter, H [1 ]
机构
[1] Aventis Pharma Deutschland GmbH, DI&A Chem, D-65926 Frankfurt, Germany
关键词
D O I
10.1021/jm011002c
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Protein kinases are critical components of signaling pathways and trigger various biological events. Several members of this superfamily are interesting targets for novel therapeutic approaches. All known eukaryotic protein kinases exhibit a conserved catalytic core domain with an adenosine 5'-triphosphate (ATP) binding site, which often is targeted in drug discovery programs. However, as ATP is common to kinases and other proteins, specific protein-ligand interactions are crucial prerequisites for valuable ATP site-directed ligands. In the present study, a set of 26 X-ray structures of eukaryotic protein kinases were classified into subfamilies with similar protein-ligand interactions in the ATP binding site using a chemometrical approach based on principal component analysis (PCA) and consensus PCA. This classification does not rely on protein sequence similarities, as descriptors are derived from three-dimensional (3D) binding site information only computed using GRID molecular interaction fields. The resulting classification, which we refer to as "target family landscape", lead to the identification of common binding pattern and specific interaction sites for particular kinase subfamilies. Moreover, those findings are in good agreement with experimental selectivity profiles for a series of 2,6,9-substituted purines as CDK inhibitors. Their interpretation in structural terms unveiled favorable substitutions toward selective CDK inhibitors and thus allowed for a rational design of specific ligands with minimized side effects. Additional 3D-quantitative structure-activity relationship (QSAR) analyses of a larger set of CDK-directed purines lead to the identification of essential structural requirements for affinity in this CDK ATP binding site. The combined interpretation of 3D-QSAR and the kinase target family landscape provides a consistent view to protein-ligand interactions, which are both favorable for affinity and selectivity in this important subfamily.
引用
收藏
页码:2366 / 2378
页数:13
相关论文
共 84 条
[1]  
Adams J L, 1999, Curr Opin Drug Discov Devel, V2, P96
[2]  
[Anonymous], 3D QSAR DRUG DESIGN
[3]   Identification of novel purine and pyrimidine cyclin-dependent kinase inhibitors with distinct molecular interactions and tumor cell growth inhibition profiles [J].
Arris, CE ;
Boyle, FT ;
Calvert, AH ;
Curtin, NJ ;
Endicott, JA ;
Garman, EF ;
Gibson, AE ;
Golding, BT ;
Grant, S ;
Griffin, RJ ;
Jewsbury, P ;
Johnson, LN ;
Lawrie, AM ;
Newell, DR ;
Noble, MEM ;
Sausville, EA ;
Schultz, R ;
Yu, W .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (15) :2797-2804
[4]   GENERATING OPTIMAL LINEAR PLS ESTIMATIONS (GOLPE) - AN ADVANCED CHEMOMETRIC TOOL FOR HANDLING 3D-QSAR PROBLEMS [J].
BARONI, M ;
COSTANTINO, G ;
CRUCIANI, G ;
RIGANELLI, D ;
VALIGI, R ;
CLEMENTI, S .
QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 1993, 12 (01) :9-20
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   18TH KREBS,HANS LECTURE - KNOWLEDGE-BASED PROTEIN MODELING AND DESIGN [J].
BLUNDELL, T ;
CARNEY, D ;
GARDNER, S ;
HAYES, F ;
HOWLIN, B ;
HUBBARD, T ;
OVERINGTON, J ;
SINGH, DA ;
SIBANDA, BL ;
SUTCLIFFE, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1988, 172 (03) :513-520
[7]   Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa [J].
Böhm, M ;
Stürzebecher, J ;
Klebe, G .
JOURNAL OF MEDICINAL CHEMISTRY, 1999, 42 (03) :458-477
[8]   NEW HYDROGEN-BOND POTENTIALS FOR USE IN DETERMINING ENERGETICALLY FAVORABLE BINDING-SITES ON MOLECULES OF KNOWN STRUCTURE [J].
BOOBBYER, DNA ;
GOODFORD, PJ ;
MCWHINNIE, PM ;
WADE, RC .
JOURNAL OF MEDICINAL CHEMISTRY, 1989, 32 (05) :1083-1094
[9]   CVT-313, a specific and potent inhibitor of CDK2 that prevents neointimal proliferation [J].
Brooks, EE ;
Gray, NS ;
Joly, A ;
Kerwar, SS ;
Lum, R ;
Mackman, RL ;
Norman, TC ;
Rosete, J ;
Rowe, M ;
Schow, SR ;
Schultz, PG ;
Wang, XB ;
Wick, MM ;
Shiffman, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (46) :29207-29211
[10]   Synthesis and application of functionally diverse 2,6,9-trisubstituted purine libraries as CDK inhibitors [J].
Chang, YT ;
Gray, NS ;
Rosania, GR ;
Sutherlin, DP ;
Kwon, S ;
Norman, TC ;
Sarohia, R ;
Leost, M ;
Meijer, L ;
Schultz, PG .
CHEMISTRY & BIOLOGY, 1999, 6 (06) :361-375