p53 as a target for anti-cancer drug development

被引:80
作者
Bouchet, Benjamin Pierre [1 ]
de Fromentel, Claude Caron [1 ]
Puisieux, Alain [1 ]
Galmarini, Carlos Maria [1 ]
机构
[1] Ctr Leon Berard, INSERM, U590, F-69373 Lyon 08, France
关键词
p53; protein; apoptosis; mutation; prognosis; gene therapy; ONYX-015;
D O I
10.1016/j.critrevonc.2005.10.005
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Loss of p53 function compromises genetic homeostasis in cells exhibiting deregulated DNA replication and/or DNA damage, and prevents normal cytotoxic responses to cancer therapies. Genetic and pharmacological approaches are being developed with the ultimate goal of restoring or controlling p53 functions in cancer patients. Progress has recently been made in the clinical use of replication-deficient virus carrying wt-TP53 (Ad5CMV-p53) and/or cancer-selective oncolytic adenoviruses (ONYX-015). These strategies demonstrated clinical activity as monotherapy and were synergistic with traditional chemotherapy agents in the treatment of some types of cancer. In addition, pharmacological methods are under development to either stimulate wild-type p53 protein function, or induce p53 mutant proteins to resume wild-type functions. These methods are based on small chemicals (CP-31388, PRIMA-1), peptides (CDB3) or single-chain Fv antibody fragments corresponding to defined p53 domains. Here, we discuss the mechanisms underlying these approaches and their perspectives for cancer therapy. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:190 / 207
页数:18
相关论文
共 126 条
[11]   Small molecules that reactivate mutant p53 [J].
Bykov, VJN ;
Selivanova, G ;
Wiman, KG .
EUROPEAN JOURNAL OF CANCER, 2003, 39 (13) :1828-1834
[12]   Mutant p53-dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: a statistical analysis of information in the National Cancer Institute database [J].
Bykov, VJN ;
Issaeva, N ;
Selivanova, G ;
Wiman, KG .
CARCINOGENESIS, 2002, 23 (12) :2011-2018
[13]   Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound [J].
Bykov, VJN ;
Issaeva, N ;
Shilov, A ;
Hultcrantz, M ;
Pugacheva, E ;
Chumakov, P ;
Bergman, J ;
Wiman, KG ;
Selivanova, G .
NATURE MEDICINE, 2002, 8 (03) :282-288
[14]   The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth [J].
Cadwell, C ;
Zambetti, GP .
GENE, 2001, 277 (1-2) :15-30
[15]   STABLE EXPRESSION OF THE WILD-TYPE P53 GENE IN HUMAN LUNG-CANCER CELLS AFTER RETROVIRUS-MEDIATED GENE-TRANSFER [J].
CAI, DW ;
MUKHOPADHYAY, T ;
LIU, YJ ;
FUJIWARA, T ;
ROTH, JA .
HUMAN GENE THERAPY, 1993, 4 (05) :617-624
[16]  
CARBONE DP, 2003, P AN M AM SOC CLIN, V22, P2494
[17]   Transcriptional targeting for ovarian cancer gene therapy [J].
Casado, E ;
Nettelbeck, DM ;
Gomez-Navarro, J ;
Hemminki, A ;
Baron, MG ;
Siegal, GP ;
Barnes, MN ;
Alvarez, RD ;
Curiel, DT .
GYNECOLOGIC ONCOLOGY, 2001, 82 (02) :229-237
[18]   Evaluation of combined vaccinia virus-mediated antitumor gene therapy with p53, IL-2, and IL-12 in a glioma model [J].
Chen, B ;
Timiryasova, TM ;
Andres, ML ;
Kajioka, EH ;
Dutta-Roy, R ;
Gridley, DS ;
Fodor, I .
CANCER GENE THERAPY, 2000, 7 (11) :1437-1447
[19]   CRYSTAL-STRUCTURE OF A P53 TUMOR-SUPPRESSOR DNA COMPLEX - UNDERSTANDING TUMORIGENIC MUTATIONS [J].
CHO, YJ ;
GORINA, S ;
JEFFREY, PD ;
PAVLETICH, NP .
SCIENCE, 1994, 265 (5170) :346-355
[20]   Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma [J].
Clayman, GL ;
El-Naggar, AK ;
Lippman, SM ;
Henderson, YC ;
Frederick, M ;
Merritt, JA ;
Zumstein, LA ;
Timmons, TM ;
Liu, TJ ;
Ginsberg, L ;
Roth, JA ;
Hong, WK ;
Bruso, P ;
Goepfert, H .
JOURNAL OF CLINICAL ONCOLOGY, 1998, 16 (06) :2221-2232