Cannabinoids depress inhibitory synaptic inputs received by layer 2/3 pyramidal neurons of the neocortex

被引:61
作者
Trettel, J
Levine, ES
机构
[1] Univ Connecticut, Ctr Hlth, Dept Pharmacol, Farmington, CT 06030 USA
[2] Univ Connecticut, Ctr Hlth, Program Neurosci, Farmington, CT 06030 USA
关键词
D O I
10.1152/jn.2002.88.1.534
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Using whole cell voltage-clamp recordings we investigated the effects of a synthetic cannabinoid (WIN55,212-2) on inhibitory inputs received by layer 2/3 pyramidal neurons in slices of the mouse auditory cortex. Activation of the type 1 cannabinoid receptor (CB1R) with WIN55,212-2 reliably reduced the amplitude of GABAergic inhibitory postsynaptic currents evoked by extracellular stimulation within layer 2/3. The suppression of this inhibition was blocked and reversed by the highly selective CB1R antagonist AM251, confirming a CB1R-mediated inhibition. Pairing evoked inhibitory postsynaptic currents (IPSCs) at short interstimulus intervals while applying WIN55,212-2 resulted in an increase in paired-pulse facilitation suggesting that the probability of GABA release was reduced. A presynaptic site of cannabinoid action was verified by an observed decrease in the frequency with no change in the amplitude or kinetics of action potential-independent postsynaptic currents (mIPSCs). When Cd2+ was added or Ca2+ was omitted from the recording solution, the remaining fraction of Ca2+-independent mIPSCs did not respond to WIN55,212-2. These data suggest that cannabinoids are capable of suppressing the inhibition of neocortical pyramidal neurons by depressing Ca2+-dependent GABA release from local interneurons.
引用
收藏
页码:534 / 539
页数:6
相关论文
共 47 条
[1]  
[Anonymous], 1997, Principles of neuropsychopharmacology
[2]   Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons [J].
Auclair, N ;
Otani, S ;
Soubrie, P ;
Crepel, F .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (06) :3287-3293
[3]   Functional role of high-affinity anandamide transport, as revealed by selective inhibition [J].
Beltramo, M ;
Stella, N ;
Calignano, A ;
Lin, SY ;
Makriyannis, A ;
Piomelli, D .
SCIENCE, 1997, 277 (5329) :1094-1097
[4]   Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol [J].
Beltramo, M ;
Piomelli, D .
NEUROREPORT, 2000, 11 (06) :1231-1235
[5]   CANNABINOID RECEPTOR AGONISTS INHIBIT CA CURRENT IN NG108-15 NEUROBLASTOMA-CELLS VIA A PERTUSSIS TOXIN-SENSITIVE MECHANISM [J].
CAULFIELD, MP ;
BROWN, DA .
BRITISH JOURNAL OF PHARMACOLOGY, 1992, 106 (02) :231-232
[6]   Occlusion of the presynaptic action of cannabinoids in rat substantia nigra pars reticulata by cadmium [J].
Chan, PKY ;
Yung, WH .
NEUROSCIENCE LETTERS, 1998, 249 (01) :57-60
[7]   INTRINSIC FIRING PATTERNS OF DIVERSE NEOCORTICAL NEURONS [J].
CONNORS, BW ;
GUTNICK, MJ .
TRENDS IN NEUROSCIENCES, 1990, 13 (03) :99-104
[8]  
Daniel H, 2001, J PHYSIOL-LONDON, V537, P793
[9]  
DEADWYLER SA, 1995, J PHARMACOL EXP THER, V273, P734
[10]   FORMATION AND INACTIVATION OF ENDOGENOUS CANNABINOID ANANDAMIDE IN CENTRAL NEURONS [J].
DIMARZO, V ;
FONTANA, A ;
CADAS, H ;
SCHINELLI, S ;
CIMINO, G ;
SCHWARTZ, JC ;
PIOMELLI, D .
NATURE, 1994, 372 (6507) :686-691