Plant growth-promoting rhizobacteria and root system functioning

被引:863
作者
Vacheron, Jordan [1 ,2 ,3 ]
Desbrosses, Guilhem [4 ]
Bouffaud, Marie-Lara [1 ,2 ,3 ,5 ]
Touraine, Bruno [4 ]
Moenne-Loccoz, Yvan [1 ,2 ,3 ]
Muller, Daniel [1 ,2 ,3 ]
Legendre, Laurent [1 ,2 ,3 ]
Wisniewski-Dye, Florence [1 ,2 ,3 ]
Prigent-Combaret, Claire [1 ,2 ,3 ]
机构
[1] Univ Lyon, Lyon, France
[2] Univ Lyon 1, F-69622 Villeurbanne, France
[3] Univ Lyon 1, CNRS, UMR 5557, F-69622 Villeurbanne, France
[4] Univ Montpellier 2, Lab Symbioses Trop & Mediterraneennes, Ctr Cooperat Int Rech Agron Dev SupAgro, UMR113,INRA,Inst Rech Dev, Montpellier, France
[5] INRA, UMR1347, F-21034 Dijon, France
来源
FRONTIERS IN PLANT SCIENCE | 2013年 / 4卷
关键词
plant-PGPR cooperation; rhizo-microbiome; rhizosphere; phytohormone; plant nutrition; ISR; functional group; 2,4-DIACETYLPHLOROGLUCINOL BIOSYNTHETIC GENES; AZOSPIRILLUM-BRASILENSE SP-245; MAIZE INBRED LINES; PSEUDOMONAS-FLUORESCENS; ARABIDOPSIS-THALIANA; BIOCONTROL STRAIN; NITRIC-OXIDE; NITROGEN-FIXATION; ORYZA-SATIVA; AMINO-ACIDS;
D O I
10.3389/fpls.2013.00356
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.
引用
收藏
页数:19
相关论文
共 248 条
[51]   Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants [J].
Cohen, Ana C. ;
Bottini, Ruben ;
Piccoli, Patricia N. .
PLANT GROWTH REGULATION, 2008, 54 (02) :97-103
[52]   Patterns in root trait variation among 25 co-existing North American forest species [J].
Comas, L. H. ;
Eissenstat, D. M. .
NEW PHYTOLOGIST, 2009, 182 (04) :919-928
[53]   The Pseudomonas Secondary Metabolite 2,4-Diacetylphloroglucinol Is a Signal Inducing Rhizoplane Expression of Azospirillum Genes Involved in Plant-Growth Promotion [J].
Combes-Meynet, Emeline ;
Pothier, Joel F. ;
Moenne-Loccoz, Yvan ;
Prigent-Combaret, Claire .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2011, 24 (02) :271-284
[54]  
Compant S., 2010, Soil Biology and Biochemistry, V42, P669, DOI DOI 10.1016/J.S0ILBI0.2009.11.024
[55]   Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria [J].
Contesto, Celine ;
Desbrosses, Guilhem ;
Lefoulon, Cecile ;
Bena, Gilles ;
Borel, Florie ;
Galland, Marc ;
Gamet, Lydia ;
Varoquaux, Fabrice ;
Touraine, Bruno .
PLANT SCIENCE, 2008, 175 (1-2) :178-189
[56]   The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum [J].
Contesto, Celine ;
Milesi, Sandrine ;
Mantelin, Sophie ;
Zancarini, Anouk ;
Desbrosses, Guilhem ;
Varoquaux, Fabrice ;
Bellini, Catherine ;
Kowalczyk, Mariusz ;
Touraine, Bruno .
PLANTA, 2010, 232 (06) :1455-1470
[57]   Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds [J].
Costa, R ;
Götz, M ;
Mrotzek, N ;
Lottmann, J ;
Berg, G ;
Smalla, K .
FEMS MICROBIOLOGY ECOLOGY, 2006, 56 (02) :236-249
[58]   Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens [J].
Couillerot, O. ;
Prigent-Combaret, C. ;
Caballero-Mellado, J. ;
Moenne-Loccoz, Y. .
LETTERS IN APPLIED MICROBIOLOGY, 2009, 48 (05) :505-512
[59]   Comparison of prominent Azospirillum strains in Azospirillum-Pseudomonas-Glomus consortia for promotion of maize growth [J].
Couillerot, Olivier ;
Ramirez-Trujillo, Augusto ;
Walker, Vincent ;
von Felten, Andreas ;
Jansa, Jan ;
Maurhofer, Monika ;
Defago, Genevieve ;
Prigent-Combaret, Claire ;
Comte, Gilles ;
Caballero-Mellado, Jesus ;
Moenne-Loccoz, Yvan .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (10) :4639-4649
[60]   The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators [J].
Couillerot, Olivier ;
Combes-Meynet, Emeline ;
Pothier, Joel F. ;
Bellvert, Floriant ;
Challita, Elita ;
Poirier, Marie-Andree ;
Rohr, Rene ;
Comte, Gilles ;
Moenne-Loccoz, Yvan ;
Prigent-Combaret, Claire .
MICROBIOLOGY-SGM, 2011, 157 :1694-1705