Exciton Quenching Close to Polymer-Vacuum Interface of Spin-Coated Films of Poly(p-phenylenevinylene) Derivative

被引:16
作者
Mikhnenko, Oleksandr V. [1 ,2 ]
Cordella, Fabrizio [1 ]
Sieval, Alexander B. [3 ]
Hummelen, Jan C. [1 ,4 ]
Blom, Paul W. M. [1 ,5 ]
Loi, Maria Antonietta [1 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[2] Dutch Polymer Inst, NL-5600 AX Eindhoven, Netherlands
[3] Solenne BV, NL-9747 AN Groningen, Netherlands
[4] Univ Groningen, Stratingh Inst Chem, NL-9747 AG Groningen, Netherlands
[5] Holst Ctr, NL-5656 AA Eindhoven, Netherlands
关键词
CHARGE SEPARATION; DIFFUSION LENGTH; PHOTOLUMINESCENCE; POLYTHIOPHENE; DISSOCIATION; TEMPERATURE; EXCITATIONS; TRANSPORT;
D O I
10.1021/jp9012637
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-fullerene bilayer heterostructures are suited to study excitonic processes in conjugated polymers. Excitons are efficiently quenched at the polymer-fullerene interface, whereas the polymer-vacuum interface is often considered as all exciton-reflecting interface. Here, we report about efficient exciton quenching close to the polymer-vacuum interface of spin-coated MDMO-PPV (poly[2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylenevinylene]) films. The quenching efficiency is estimated to be as high as that of the polymer-fullerene interface. This efficient quenching is consistent with enhanced intermolecular interactions close to the polymer-vacuum interface due to the formation of a "skin layer" during, the spin-coating procedure. Ill the skin layer, the polymer density is higher; that is, the intermolecular distances are shorter than in the rest of the film. The effect of exciton quenching at the polymer-vacuum interface should be taken into account when the thickness of the polymer film is on the order of the exciton diffusion length; in particular, in the determination of the exciton diffusion length.
引用
收藏
页码:9104 / 9109
页数:6
相关论文
共 37 条
[1]   Excitation transport and charge separation in an organic photovoltaic material: Watching excitations diffuse to interfaces [J].
Barbour, Larry W. ;
Pensack, Ryan D. ;
Hegadorn, Maureen ;
Arzhantsev, Sergei ;
Asbury, John B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (10) :3926-3934
[2]   SPIN COATING - ONE-DIMENSIONAL MODEL [J].
BORNSIDE, DE ;
MACOSKO, CW ;
SCRIVEN, LE .
JOURNAL OF APPLIED PHYSICS, 1989, 66 (11) :5185-5193
[3]   Birefringence and dispersion of the light emitting polymer MEH-PPV [J].
Boudrioua, A ;
Hobson, PA ;
Matterson, B ;
Samuel, IDW ;
Barnes, WL .
SYNTHETIC METALS, 2000, 111 :545-547
[4]   Solution-processed organic solar cells [J].
Brabec, Christoph J. ;
Durrant, James R. .
MRS BULLETIN, 2008, 33 (07) :670-675
[5]   Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time [J].
Brabec, CJ ;
Zerza, G ;
Cerullo, G ;
De Silvestri, S ;
Luzzati, S ;
Hummelen, JC ;
Sariciftci, S .
CHEMICAL PHYSICS LETTERS, 2001, 340 (3-4) :232-236
[6]   Thickness-dependent thermal transition temperatures in thin conjugated polymer films [J].
Campoy-Quiles, M. ;
Sims, M. ;
Etchegoin, P. G. ;
Bradley, D. D. C. .
MACROMOLECULES, 2006, 39 (22) :7673-7680
[7]   On the optical anisotropy of conjugated polymer thin films [J].
Campoy-Quiles, M ;
Etchegoin, PG ;
Bradley, DDC .
PHYSICAL REVIEW B, 2005, 72 (04)
[8]   Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed [J].
DeLongchamp, DM ;
Vogel, BM ;
Jung, Y ;
Gurau, MC ;
Richter, CA ;
Kirillov, OA ;
Obrzut, J ;
Fischer, DA ;
Sambasivan, S ;
Richter, LJ ;
Lin, EK .
CHEMISTRY OF MATERIALS, 2005, 17 (23) :5610-5612
[9]   Effect of free surfaces on the glass transition temperature of thin polymer films [J].
Forrest, JA ;
DalnokiVeress, K ;
Stevens, JR ;
Dutcher, JR .
PHYSICAL REVIEW LETTERS, 1996, 77 (10) :2002-2005
[10]   Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C-60 heterojunction photovoltaic cell [J].
Halls, JJM ;
Pichler, K ;
Friend, RH ;
Moratti, SC ;
Holmes, AB .
APPLIED PHYSICS LETTERS, 1996, 68 (22) :3120-3122