How Many-Body Effects Modify the van der Waals Interaction between Graphene Sheets

被引:49
作者
Dobson, John F. [1 ,2 ,3 ,4 ]
Gould, Tim [1 ]
Vignale, Giovanni [4 ]
机构
[1] Griffith Univ, Queensland Micro & Nano Technol Ctr, Nathan, Qld 4111, Australia
[2] Univ Basque Country, Donostia Int Phys Ctr, San Sebastian 2008, Spain
[3] Univ Basque Country, European Theoret Spect Ctr, San Sebastian 2008, Spain
[4] Univ Missouri, Dept Phys, Columbia, MO 65211 USA
来源
PHYSICAL REVIEW X | 2014年 / 4卷 / 02期
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
FERMI-LIQUID BEHAVIOR; CASIMIR FORCE; DISPERSION; GRAPHITE; ENERGY;
D O I
10.1103/PhysRevX.4.021040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Undoped-graphene (Gr) sheets at low temperatures are known, via random-phase-approximation (RPA) calculations, to exhibit unusual van der Waals (vdW) forces. Here, we show that graphene is the first known system where effects beyond the RPA within each interacting subsystem make qualitative changes to the vdW force, observable via its local exponent d log (F)/d log (D). For large separations D >= 10 nm, where only the pi(z) vdW forces remain, we find that the Gr-Gr vdW interaction is substantially reduced from the RPA prediction. Its D dependence is very sensitive to the form of the long-wavelength, in-plane many-body enhancement of the velocity of the massless Dirac fermions and may provide independent confirmation of the latter via direct force measurements. The simple connection that we expose is a strong motivation for further refinement of recent successful direct vdW force measurements.
引用
收藏
页数:9
相关论文
共 58 条
[1]   Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets [J].
Abedinpour, Saeed H. ;
Vignale, G. ;
Principi, A. ;
Polini, Marco ;
Tse, Wang-Kong ;
MacDonald, A. H. .
PHYSICAL REVIEW B, 2011, 84 (04)
[2]   Measuring the Casimir force gradient from graphene on a SiO2 substrate [J].
Banishev, A. A. ;
Wen, H. ;
Xu, J. ;
Kawakami, R. K. ;
Klimchitskaya, G. L. ;
Mostepanenko, V. M. ;
Mohideen, U. .
PHYSICAL REVIEW B, 2013, 87 (20)
[3]   Microscopic determination of the interlayer binding energy in graphite [J].
Benedict, LX ;
Chopra, NG ;
Cohen, ML ;
Zettl, A ;
Louie, SG ;
Crespi, VH .
CHEMICAL PHYSICS LETTERS, 1998, 286 (5-6) :490-496
[4]   Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids [J].
Bucko, Tomas ;
Lebegue, S. ;
Hafner, Juergen ;
Angyan, J. G. .
PHYSICAL REVIEW B, 2013, 87 (06)
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Application of van der Waals density functional to an extended system:: Adsorption of benzene and naphthalene on graphite [J].
Chakarova-Käck, SD ;
Schröder, E ;
Lundqvist, BI ;
Langreth, DC .
PHYSICAL REVIEW LETTERS, 2006, 96 (14)
[7]   Vortex fluidic exfoliation of graphite and boron nitride [J].
Chen, Xianjue ;
Dobson, John F. ;
Raston, Colin L. .
CHEMICAL COMMUNICATIONS, 2012, 48 (31) :3703-3705
[8]   Effect of electron-hole inhomogeneity on specular Andreev reflection and Andreev retroreflection in a graphene-superconductor hybrid system [J].
Cheng, Shu-guang ;
Zhang, Hui ;
Sun, Qing-feng .
PHYSICAL REVIEW B, 2011, 83 (23)
[9]   Many-body interaction effects in doped and undoped graphene: Fermi liquid versus non-Fermi liquid [J].
Das Sarma, S. ;
Hwang, E. H. ;
Tse, Wang-Kong .
PHYSICAL REVIEW B, 2007, 75 (12)
[10]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1