Accounting for model uncertainty in seemingly unrelated regressions

被引:20
作者
Holmes, CC
Denison, DGT
Mallick, BK
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Bayesian model choice; Markov chain Monte Carlo; multivariate regression; vector autoregression;
D O I
10.1198/106186002475
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intractable and we adopt computer-intensive simulation using variable dimension Markov chain Monte Carlo algorithms to approximate quantities of interest. Applications are given for vector autoregression (VAR) models of unknown order and multivariate spline models with unknown knot points.
引用
收藏
页码:533 / 551
页数:19
相关论文
共 38 条
[1]  
Bauwens L, 1996, ADV ECONOM, V11, P3
[2]   A 1-1 POLY-TERT RANDOM VARIABLE GENERATOR WITH APPLICATION TO MONTE-CARLO INTEGRATION [J].
BAUWENS, L ;
RICHARD, JF .
JOURNAL OF ECONOMETRICS, 1985, 29 (1-2) :19-46
[3]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[4]   Predicting multivariate responses in multiple linear regression [J].
Breiman, L ;
Friedman, JH .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (01) :3-37
[5]   HINGING HYPERPLANES FOR REGRESSION, CLASSIFICATION, AND FUNCTION APPROXIMATION [J].
BREIMAN, L .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :999-1013
[6]  
Brooks SP, 1999, BAYESIAN STATISTICS 6, P733
[7]  
Brown P. J., 1993, MEASUREMENT REGRESSI
[8]   Multivariate Bayesian variable selection and prediction [J].
Brown, PJ ;
Vannucci, M ;
Fearn, T .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :627-641
[9]  
BROWN PJ, 1980, BAYESIAN STAT, P247
[10]  
CLYDE M, 1999, BAYESIAN STAT, V6