Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution

被引:152
作者
Zhao, Xue [1 ,2 ]
Zhua, Hui [1 ]
Yang, Xiurong [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
ACTIVE EDGE SITES; MOLYBDENUM-DISULFIDE; ULTRATHIN NANOSHEETS; FACILE SYNTHESIS; GRAPHENE OXIDE; H-2; PRODUCTION; NANOPARTICLES; COCATALYSTS; GROWTH; LAYERS;
D O I
10.1039/c4nr01885k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Amorphous carbon supported MoS2, which was elaborately prepared by using a facile hydrothermal method followed by annealing, is first employed as a catalyst for the hydrogen evolution reaction ( HER). Herein, we demonstrate a preparation strategy, by which MoS2 and carbon materials could be formed in situ and simultaneously. The MoS2 nanosheets are vertically formed on the carbon nanosphere, as illustrated in the scanning electron micrograph. The unique morphology can expose abundant edges of the MoS2 layer as active sites for the HER, while the underlying amorphous carbon effectively improves the conductivity. By means of employing amorphous carbon as a substrate, an optimized catalyst was developed, which exhibited enhanced catalytic activity for the electrocatalytic HER with an onset potential as low as 80 mV, extremely large cathodic current density and excellent stability. Notably, a Tafel slope of 40 mV per decade was measured, which exceeds by far the activity of previous MoS2 catalysts and suggests the Volmer-Heyrovsky-mechanism for the MoS2-catalyzed HER.
引用
收藏
页码:10680 / 10685
页数:6
相关论文
共 39 条
[1]   Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method [J].
Balendhran, Sivacarendran ;
Ou, Jian Zhen ;
Bhaskaran, Madhu ;
Sriram, Sharath ;
Ippolito, Samuel ;
Vasic, Zoran ;
Kats, Eugene ;
Bhargava, Suresh ;
Zhuiykov, Serge ;
Kalantar-zadeh, Kourosh .
NANOSCALE, 2012, 4 (02) :461-466
[2]   Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang ;
Ma, Lin ;
Li, Hui ;
Li, He ;
Huang, Feihe ;
Xu, Zhude ;
Zhang, Qingbo ;
Lee, Jim-Yang .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (17) :6251-6257
[3]   Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets [J].
Chen, Wei-Fu ;
Sasaki, Kotaro ;
Ma, Chao ;
Frenkel, Anatoly I. ;
Marinkovic, Nebojsa ;
Muckerman, James T. ;
Zhu, Yimei ;
Adzic, Radoslav R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (25) :6131-6135
[4]   Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H [J].
Conway, BE ;
Tilak, BV .
ELECTROCHIMICA ACTA, 2002, 47 (22-23) :3571-3594
[5]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[6]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116
[7]   High Pt loading on functionalized multiwall carbon nanotubes as a highly efficient cathode electrocatalyst for proton exchange membrane fuel cells [J].
Fang, Baizeng ;
Kim, Min-Sik ;
Kim, Jung Ho ;
Song, Min Young ;
Wang, Yan-Jie ;
Wang, Haijiang ;
Wilkinson, David P. ;
Yu, Jong-Sung .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (22) :8066-8073
[8]   Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst [J].
Firmiano, Edney G. S. ;
Cordeiro, Marcos A. L. ;
Rabelo, Adriano C. ;
Dalmaschio, Cleocir J. ;
Pinheiro, Antonio N. ;
Pereira, Ernesto C. ;
Leite, Edson R. .
CHEMICAL COMMUNICATIONS, 2012, 48 (62) :7687-7689
[9]   Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution [J].
Hinnemann, B ;
Moses, PG ;
Bonde, J ;
Jorgensen, KP ;
Nielsen, JH ;
Horch, S ;
Chorkendorff, I ;
Norskov, JK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5308-5309
[10]   Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes [J].
Hu, Xile ;
Brunschwig, Bruce S. ;
Peters, Jonas C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (29) :8988-8998